OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 6939–6945

Enhanced light coupling in sub-wavelength single-mode silicon on insulator waveguides

C. Pang, F. Gesuele, A. Bruyant, S. Blaize, G. Lerondel, and P. Royer  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 6939-6945 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (729 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on NIR efficient end-coupling in single-mode silicon on insulator waveguides. Efficient coupling has been achieved using Polymer-Tipped Optical Fibers (PTOF) of adaptable radius of curvature (ROC). When compared with commercial micro lenses, systematic studies as a function of PTOF ROC, lead for subwavelength PTOF to a coupling factor enhancement as high as 2.5. This experimental behavior is clearly corroborated by radial FDTD simulations and an absolute coupling efficiency of about 50% is also estimated.

© 2009 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.0230) Optical devices : Optical devices

ToC Category:
Integrated Optics

Original Manuscript: February 4, 2009
Revised Manuscript: March 24, 2009
Manuscript Accepted: March 27, 2009
Published: April 13, 2009

C. Pang, F. Gesuele, A. Bruyant, S. Blaize, G. Lérondel, and P. Royer, "Enhanced light coupling in sub-wavelength single-mode silicon on insulator waveguides," Opt. Express 17, 6939-6945 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Orobtchouk, A. Layadi, H. Gualous, D. Pascal, A. Koster, and S. Laval, "High-Efficiency Light Coupling in a Submicrometric Silicon-on-Insulator Waveguide," Appl. Opt. 39, 5773-5777 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ao-39-31-5773. [CrossRef]
  2. D. Taillaert, W. Bogaerts, and R. Baets, "Efficient coupling between submicron SOI- waveguides and single-mode fibers," IEEE/LEOS Benelux Chapter, Enscheda (2003).
  3. L. Vivien, D. Pascal, S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, J. Fédéli, and L. El Melhaoui, "Light Injection in SOI Microwaveguides Using High-Efficiency Grating Couplers," J. Lightwave Technol. 24, 3810-3815(2006), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-24-10-3810. [CrossRef]
  4. L. Vivien, S. Laval, E. Cassan, X. L. Roux, and D. Pascal, "2-D Taper for Low-Loss Coupling Between Polarization-Insensitive Microwaveguides and Single-Mode Optical Fibers," J. Lightwave Technol. 21, 2429-(2003), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-21-10-2429. [CrossRef]
  5. J. V. Galán, P. Sanchis, G. Sánchez, and J. Martí, "Polarization insensitive low-loss coupling technique between SOI waveguides and high mode field diameter single-mode fibers," Opt. Express 15, 7058-7065 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-7058. [CrossRef] [PubMed]
  6. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=OL-28-15-1302. [CrossRef] [PubMed]
  7. T. Wahlbrinka, W. S. Tsaic, M. Waldowb, M. Förstb, J. Boltena, T. Mollenhauera, and H. Kurza, "Fabrication of high efficiency SOI taper structures," Mic. Eng.in press.
  8. G. Masanovic, G. Reed, W. Headley, B. Timotijevic, V. Passaro, R. Atta, G. Ensell, and A. Evans, "A high efficiency input/output coupler for small silicon photonic devices," Opt. Express 13, 7374-7379 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7374. [CrossRef] [PubMed]
  9. R. Bachelot, C. Ecoffet, P. Deloeil, P. Royer, and D. J. Lougnot. "Integration of Micrometer-Sized Polymer Elements at the End of Optical Fibers by Free-Radical Photopolymerization," Appl. Opt. 40, 5860-5871 (2001). [CrossRef]
  10. R. Bachelot, A. Fares, R. Fikri, D. Barchiesi, G. Lerondel, and P. Royer," Coupling semiconductor lasers into single-mode optical fibers by use of tips grown by photo polymerization," Opt. Lett. 29, 1971-1973 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-17-1971. [CrossRef] [PubMed]
  11. A. Taflove and S. C. Hagness, "The Finite-Difference Time-Domain Method in Computational Electrodynamics," 2nd edition, (Boston Artech House 2000).
  12. M. Skorobogatiy, S. Jacobs, S. Johnson, and Y. Fink, "Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates," Opt. Express 10, 1227-1243 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-21-1227. [PubMed]
  13. The difference observed between the two polarizations is small, mainly du to the fact that the waveguide’s cross-section is almost square (250nmx300nm) and also because the influence of the air/ sample surface is weak since the waveguide is notably buried.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited