OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7019–7024

Active Control and Spatial Mapping of Mid-Infrared Propagating Surface Plasmons

T. Ribaudo, E. A. Shaner, S. S. Howard, C. Gmachl, X. J. Wang, F.-S. Choa, and D. Wasserman  »View Author Affiliations


Optics Express, Vol. 17, Issue 9, pp. 7019-7024 (2009)
http://dx.doi.org/10.1364/OE.17.007019


View Full Text Article

Enhanced HTML    Acrobat PDF (597 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Periodic arrays of subwavelength apertures in metal films have been shown to exhibit strongly enhanced transmission at wavelengths determined by the periodicity of the film as well as the optical properties of the metal and surrounding dielectric material. Here we investigate the coupling between such a grating and a Quantum Cascade Laser. By actively tuning the optical properties of our grating, we control the coupling of laser light to the plasmonic structure, switching our grating from a predominantly transmitting state to a state that allows coupling to propagating surface waves, which can then be imaged on the metallic surface.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: February 26, 2009
Revised Manuscript: April 3, 2009
Manuscript Accepted: April 6, 2009
Published: April 13, 2009

Citation
T. Ribaudo, E. A. Shaner, S. S. Howard, C. Gmachl, X. J. Wang, F.-S. Choa, and D. Wasserman, "Active control and spatial mapping of mid-infrared propagating surface plasmons," Opt. Express 17, 7019-7024 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-9-7019


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Heitmann and H. Raether, "Light emission of nonradiative surface plasmons from sinusoidally modulated silver surfaces," Surf. Sci 59, 17-22 (1976).
  2. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-Plasmon Resonance Effect in Grating Diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
  4. F. García-Vidal, L. Martín-Moreno, H. J. Lezec and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
  5. C. Genet, T. W. Ebbesen, "Light in Tiny Holes," Nature 445, 39-46 (2007). [PubMed]
  6. K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, "Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures," J. Chem. Phys. 21, 8671-8675 (2004).
  7. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003). [PubMed]
  8. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002).
  9. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "A theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). [PubMed]
  10. R. Müller, V. Malyarchuk, and C. Lienau "Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes," Phys. Rev. B 68, 205415-205423 (2003).
  11. S.-H. Chang, S. Gray, and G. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005). [PubMed]
  12. P. D. Flammer, I. C. Schick, R. T. Collins, and R. E. Hollingsworth, "Interference and resonant cavity effects explain enhanced transmission through subwavelength apertures in thin metal films," Opt. Express 15, 7984-7993 (2007). [PubMed]
  13. H. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 36293651 (2004).
  14. P. Lalanne and J. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2, 551-556 (2006).
  15. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces," Science 305, 847-848 (2005).
  16. F. García de Abajo and J. J. Sáens, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett. 95, 233901 (2005).
  17. H. Liu and P. Lalanne, "Microscopic Theory of Extraordinary transmission," Nature 452728-731 (2008). [PubMed]
  18. D. Pacifici, H. J. Lezec, R. J. Walters, and H. A Atwater, "Universal optical transmission features in periodic and quasiperiodic hole arrays," Opt. Express 169222-9238 (2008). [PubMed]
  19. T. Ribaudo, B. Passmore, K. Freitas, E. A. Shaner, J. G. Cederberg, and D. Wasserman, "Loss mechanisms in mid-infrared extraordinary optical transmission gratings," Opt. Express 17, 666-675 (2009). [PubMed]
  20. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
  21. E. A. Shaner, J. Cederberg, and D. Wasserman, "Current-tunable mid-infrared extraordinary transmission gratings," Appl. Phys. Lett. 91, 181110 (2007).
  22. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, "Thermally Activated Variable Attenuation of Long-Range Surface Plasmon-Polariton Waves," J. Lightwave Technol. 24, 43914402 (4391).
  23. D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nat. Photonics 1, 402-406 (2007).
  24. J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, "Thermal switching of the enhanced transmission of terahertz radiation through subwavelength apertures," Opt. Lett. 29,16801682 (2004).
  25. C. Janke, J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, "All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures," Opt. Lett. 30, 2357-2359 (2005). [PubMed]
  26. J. Gómez Rivas, M. Kuttge, H. Kurz P. Haring Bolivar and J. A. Sánchez-Gil, "Low-frequency active surface plasmon optics on semiconductors," Appl. Phys. Lett. 88, 082106 (2006).
  27. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gómez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, "Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture," Phys. Rev. Lett. 100, 123901 (2008). [PubMed]
  28. J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123-R181 (1982).
  29. C. P. Christensen, R. Joiner, S. T. K. Nieh, and W. H. Steier, "Investigation of infrared loss mechanisms in high-resistivity GaAs," J. Appl. Phys. 45,4957-4960 (1974).
  30. W. L. Barnes, "Surface plasmon-polariton length scales: a route to sub-wavelength optics," J. Opt. A: Pure Appl. Opt. 8, S87-S93 (2006).
  31. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited