OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7036–7042

Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate

Katsuaki Tanabe, Masahiro Nomura, Denis Guimard, Satoshi Iwamoto, and Yasuhiko Arakawa  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7036-7042 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (142 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Room temperature, continuous-wave lasing in a quantum dot photonic crystal nanocavity on a Si substrate has been demonstrated by optical pumping. The laser was an air-bridge structure of a two-dimensional photonic crystal GaAs slab with InAs quantum dots inside on a Si substrate fabricated through wafer bonding and layer transfer. This surface-emitting laser exhibited emission at 1.3 μm with a threshold absorbed power of 2 μW, the lowest out of any type of lasers on silicon.

© 2009 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.5300) Optoelectronics : Photonic integrated circuits
(230.5298) Optical devices : Photonic crystals
(250.5960) Optoelectronics : Semiconductor lasers
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Photonic Crystals

Original Manuscript: March 2, 2009
Revised Manuscript: April 8, 2009
Manuscript Accepted: April 9, 2009
Published: April 13, 2009

Katsuaki Tanabe, Masahiro Nomura, Denis Guimard, Satoshi Iwamoto, and Yasuhiko Arakawa, "Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate," Opt. Express 17, 7036-7042 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Park, A. W. Fang, S. Kodama, and J. E. Bowers, "Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells," Opt. Express 13, 9460-9464 (2005). [CrossRef] [PubMed]
  2. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, "Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector," Opt. Express 15, 2315-2322 (2007). [CrossRef] [PubMed]
  3. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 ?m," Electron. Lett. 37, 764-766 (2001). [CrossRef]
  4. C. Monat, C. Seassal, X. Letartre, R. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. L. d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "InP-based two-dimensional photonic crystal on silicon: In-plane Bloch mode laser," Appl. Phys. Lett. 81, 5102-5104 (2002). [CrossRef]
  5. J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. Leclereq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, "Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon," Electron. Lett. 39, 526-528 (2003). [CrossRef]
  6. G. Vecchi, F. Raineri, I. Sagnes, A. Yacomotti, P. Monnier, T. J. Karle, K. Lee, R. Bravive, L. L. Gratiet, S. Guilet, G. Beaudoin, A. Talneau, S. Bouchoule, A. Levenson, and R. Raj, "Continuous-wave operation of photonic band-edge laser near 1.55 ?m on silicon wafer," Opt. Express 15, 7551-7556 (2007). [CrossRef] [PubMed]
  7. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si wafer," IEEE J. Quantum Electron. 39, 419-425 (2003). [CrossRef]
  8. M. H. Shih, A. Mock, M. Bagheri, N. Suh, S. Farrell, S. Choi, J. D. O’Brien, and P. D. Dapkus, "Photonic crystal lasers in InGaAsP on a SiO2/Si substrate and its thermal impedance," Opt. Express 15, 227-232 (2007). [CrossRef] [PubMed]
  9. Y. Arakawa and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett. 40, 939-941 (1982). [CrossRef]
  10. P. Bhattacharya and Z. Mi, "Quantum-dot optoelectronic devices," Proc. IEEE 95, 1723-1740 (2007). [CrossRef]
  11. T. Yoshie, O. B. Shchekin, H. Chen, D. G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38, 967-968 (2002). [CrossRef]
  12. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14, 6308-6315 (2006). [CrossRef] [PubMed]
  13. M. Nomura, S. Iwamoto, N. Kumagai, and Y. Arakawa, "Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor," Phys. Rev. B 75, 195313 (2007). [CrossRef]
  14. B. Ben Bakir, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Room-temperature InAs/InP quantum dots laser operation based on heterogeneous "2.5 D" Photonic Crystal," Opt. Express 14, 9269-9276 (2006). [CrossRef] [PubMed]
  15. X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, "Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures," J. Opt. Soc. Am. B 22, 2581-2595 (2005). [CrossRef]
  16. M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, "Photonic band-edge micro lasers with quantum dot gain," Opt. Express 17, 640-648 (2009). [CrossRef] [PubMed]
  17. D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, "High density InAs/GaAs quantum dots with enhanced photoluminescence intensity using antimony-mediated metal organic chemical vapor deposition," Appl. Phys. Lett. 89, 183124 (2006). [CrossRef]
  18. D. Guimard, M. Ishida, L. Li, M. Nishioka, Y. Tanaka, H. Sudo, T. Yamamoto, H. Kondo, M. Sugawara, and Y. Arakawa, "Interface properties of InAs quantum dots produced by antimony surfactant-mediated growth: etching of segregated antimony and its impact on the photoluminescence and lasing characteristics," Appl. Phys. Lett. 94, 103116 (2009). [CrossRef]
  19. K. Tanabe, A. Fontcuberta i Morral, H. A. Atwater, D. J. Aiken, and M. W. Wanlass, "Direct-bonded GaAs/InGaAs tandem solar cell," Appl. Phys. Lett. 89, 102106 (2006). [CrossRef]
  20. Y. Mori and N. Watanabe, "A new etching solution system, H3PO4-H2O2-H2O, for GaAs and its kinetics," J. Electrochem. Soc. 125, 1510-1514 (1978). [CrossRef]
  21. G. C. DeSalvo, W. F. Tseng, and J. Comas, "Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs, Al0.3Ga0.7As, In0.2Ga0.8As, In0.53Ga0.47As, In0.52Al0.48As, and InP," J. Electrochem. Soc. 139, 831-835 (1992). [CrossRef]
  22. C. Carter-Coman, R. Bicknell-Tassius, R. G. Benz, A. S. Brown, and N. M. Jokerst, "Analysis of GaAs substrate removal etching with citric acid:H2O2 and NH4OH:H2O2 for application to compliant substrates," J. Electrochem. Soc. 144, L29-L31 (1997). [CrossRef]
  23. Y. Akahane, T. Asano, B. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  24. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, "Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding," Appl. Phys. Lett. 88, 011112 (2006). [CrossRef]
  25. C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d'Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, "Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on an InP membrane," J. Appl. Phys. 93, 23-31 (2003). [CrossRef]
  26. S. Strauf, K. Hennessy, M. T. Rakher, Y. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404 (2006). [CrossRef] [PubMed]
  27. G. Björk, A. Karlsson, and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett. 60, 304-306 (1992). [CrossRef]
  28. G. Björk, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys. Rev. A 50, 1675-1680 (1994). [CrossRef] [PubMed]
  29. Y. Ota, M. Nomura, N. Kumagai, K. Watanabe, S. Ishida, S. Iwamoto, and Y. Arakawa, "Enhanced photon emission and absorption of single quantum dot in resonance with two modes in photonic crystal nanocavity," Appl. Phys. Lett. 93, 183114 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2 Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited