OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7068–7073

Rainbow-like radiation from an omni-directional source placed in a uniaxial metamaterial slab

Tao Jiang, Yu Luo, Zhiyu Wang, Liang Peng, Jiangtao Huangfu, Wanzhao Cui, Wei Ma, Hongsheng Chen, and Lixin Ran  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7068-7073 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (295 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, the radiation of an omni-directional line source placed in a uniaxial metamaterial slab is experimentally presented. The anisotropic slab made of metallic symmetrical rings with dispersive permeability is investigated both theoretically and experimentally. For low value of the permeability, a directive radiation at the broadside of the slab can be obtained. Due to the excitation of the leaky wave mode supported by this structure, the emitted electromagnetic wave transmits at a greater angle from the normal of the slab as the value of permeability increases along with the frequency. Thus a rainbow-like radiation will be formed since waves of different frequencies will deflect into different directions.

© 2009 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(350.5610) Other areas of optics : Radiation
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: January 30, 2009
Revised Manuscript: April 10, 2009
Manuscript Accepted: April 11, 2009
Published: April 14, 2009

Tao Jiang, Yu Luo, Zhiyu Wang, Liang Peng, Jiangtao Huangfu, Wanzhao Cui, Wei Ma, Hongsheng Chen, and Lixin Ran, "Rainbow-like radiation from an omni-directional source placed in a uniaxial metamaterial slab," Opt. Express 17, 7068-7073 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?" Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity" Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  3. J. B. Pendry, "Negative refraction makes a perfect lens" Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies" Science. 314, 977-980 (2006) [CrossRef] [PubMed]
  5. D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media" Opt. Express. 14, 9794-9804 (2006). [CrossRef] [PubMed]
  6. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures" Phys. Rev. E. 74, 036621-1-5 (2006). [CrossRef]
  7. R. W. Ziolkowski, "Propagation in and scattering from a matched metamaterial having a zero index of refraction" Phys. Rev. E.  70, 046608-1-4 (2004) [CrossRef]
  8. F. L. Zhang, S. Potet, and J. Caobonell, "Negative-Zero-Positive Refractive Index in a Prism-Like Omega-Type Metamaterial" IEEE Trans. Microwave Theory Tech. 56, 2566-2573 (2008). [CrossRef]
  9. A. Alu, M. G. Silveirinha, and N. Engheta, "Transmission-line analysis of epsilon-near-zero-filled narrow channels" Phys. Rev. E.  78, 016604-1-4 (2008) [CrossRef]
  10. B. Edwards, A. Alu, M. E. Young, M. Silveirinha, N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide" Phys. Rev. Lett. 100, 033903-1-4 (2008). [CrossRef] [PubMed]
  11. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission" Phys. Rev. Lett. 89, 213902-1-4 (2002). [CrossRef] [PubMed]
  12. Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, and J. T. Huangfu, "Directive emission based on anisotropic metamaterials" Phys. Rev. A. 77, 053821-1-5 (2008). [CrossRef]
  13. B. I. Wu, W. Wang, J. Pacheco et al, "A study of using metamaterial as antenna substrate to enhance gain" Progress in Electromagnetics Research, PIER 51, 295-328 (2005). [CrossRef]
  14. G. Lovat, P. Burghignoli, F. Capolino, D. R. Jackson, and D. R. Wilton, "Analysis of Directive Radiation From a Line Source in a Metamaterial Slab With Low Permittivity" IEEE Trans. Antennas Propag. 54, 1017-1030 (2006). [CrossRef]
  15. P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Effects of Leaky-Wave Propagation in Metamaterial Grounded Slabs Excited by a Dipole Source" IEEE Trans. Microwave Theory Tech. 53, 32-44 (2005). [CrossRef]
  16. N. Guérin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A Metallic Fabry-Perot Directive Antenna" IEEE Trans. Antennas Propag. 54, 220-224 (2006). [CrossRef]
  17. P. Burghignoli, G. Lovat, F. Capolino, D. R. Jackson, and D. R. Wilton, "Directive Leaky-Wave Radiation From a Dipole Source in a Wire-Medium Slab" IEEE Trans. Antennas Propag. 56, 1329-1339 (2008). [CrossRef]
  18. A. Alù, F. Bilotti, N. Engheta and L. Vegni, "Subwavelength Planar Leaky-Wave Components With Metamaterial Bilayers" IEEE Trans. Antennas Propag. 55, 882-891 (2007). [CrossRef]
  19. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena" IEEE. Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  20. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients" Phys. Rev. B. 65, 195104-1-4 (2002). [CrossRef]
  21. X. D. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials" Phys. Rev. E. 70, 016608-1-4 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited