OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7117–7129

Active plasmonic devices via electron spin

C. A. Baron and A. Y. Elezzabi  »View Author Affiliations


Optics Express, Vol. 17, Issue 9, pp. 7117-7129 (2009)
http://dx.doi.org/10.1364/OE.17.007117


View Full Text Article

Acrobat PDF (3759 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A class of active terahertz devices that operate via particle plasmon oscillations is introduced for ensembles consisting of ferromagnetic and dielectric micro-particles. By utilizing an interplay between spin-orbit interaction manifesting as anisotropic magnetoresistance and the optical distance between ferromagnetic particles, a multifaceted paradigm for device design is demonstrated. Here, the phase accumulation of terahertz radiation across the device is actively modulated via the application of an external magnetic field. An active plasmonic directional router and an active plasmonic cylindrical lens are theoretically explored using both an empirical approach and finite-difference time-domain calculations. These findings are experimentally supported.

© 2009 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(160.1245) Materials : Artificially engineered materials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 9, 2009
Revised Manuscript: April 9, 2009
Manuscript Accepted: April 12, 2009
Published: April 15, 2009

Citation
C. A. Baron and A. Y. Elezzabi, "Active plasmonic devices via electron spin," Opt. Express 17, 7117-7129 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-9-7117


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  2. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004). [CrossRef]
  3. W. Zhu, A. Agrawal, and A. Nahata, "Planar plasmonic terahertz guided-wave devices," Opt. Express 16, 6216-6226 (2008). [CrossRef]
  4. K. J. Chau, G. D. Dice, and A. Y. Elezzabi, "Coherent Plasmonic Enhanced Terahertz Transmission through Random Metallic Media," Phys. Rev. Lett. 94, 173904 (2005). [CrossRef]
  5. K. J. Chau and A. Y. Elezzabi, "Terahertz transmission through ensembles of subwavelength-size metallic particles," Phys. Rev. B 72, 075110 (2005). [CrossRef]
  6. K. J. Chau and A. Y. Elezzabi, "Photonic Anisotropic Magnetoresistance in Dense Co Particle Ensembles," Phys. Rev. Lett. 96, 033903 (2006). [CrossRef]
  7. K. J. Chau, C. A. Baron, and A. Y. Elezzabi, "Isotropic Photonic Magnetoresistance," Appl. Phys. Lett. 90, 121122 (2007). [CrossRef]
  8. K. J. Chau, M. Johnson, and A. Y. Elezzabi, "Electron-Spin-Dependent Terahertz Light Transport in Spintronic-Plasmonic Media," Phys. Rev. Lett. 98, 133901 (2007). [CrossRef]
  9. A. Y. Elezzabi, K. J. Chau, C. A. Baron, and P. Maraghechi, "A plasmonic random composite with atypical refractive index," Opt. Express 17, 1016-1022 (2009). [CrossRef]
  10. C. A. Baron and A. Y. Elezzabi, "A magnetically active terahertz plasmonic artificial material," Appl. Phys. Lett. 94, 071115 (2009). [CrossRef]
  11. T. R. McGuire and R. I. Potter, "Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys," IEEE Trans. Magn. 11, 1018-1038 (1975). [CrossRef]
  12. A. Taflove, Computational Electrodynamics (Artech House, Boston, 1995).
  13. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  14. M. A. Ordal, R. J. Bell, R. W. Alexander, Jr, L. L. Long, and M. R. Querry, " Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Appl. Opt. 24, 4493-4499 (1985). [CrossRef]
  15. C. A. Baron and A. Y. Elezzabi, " A 360° angularly ranging time-domain terahertz spectroscopy system," Meas. Sci. Technol. 19, 065602 (2008). [CrossRef]
  16. J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi "Free-Space Detection of Terahertz Radiation Using Crystalline and Polycrystalline ZnSe Electro-optic Sensors," Appl. Phys. Lett. 81, 2294-2296 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited