OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7159–7169

Temperature Dependence of a Diode-Pumped Cryogenic Er:YAG Laser

Nikolay Ter-Gabrielyan, Mark Dubinskii, G. Alex Newburgh, Arockiasamy Michael, and Larry D. Merkle  »View Author Affiliations


Optics Express, Vol. 17, Issue 9, pp. 7159-7169 (2009)
http://dx.doi.org/10.1364/OE.17.007159


View Full Text Article

Enhanced HTML    Acrobat PDF (241 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the laser performance of resonantly diode-pumped Er:YAG from liquid nitrogen temperature to above room temperature. Relative to incident pump power, the best performance was observed at approximately 160 K. Spectroscopy and modeling show that this is due primarily to the changing efficiency of diode pump absorption as the absorption lines broaden with temperature. However, the physics of the Er:YAG system indicates that even with arbitrarily narrow pump linewidth the most efficient laser performance should occur at a temperature somewhat above 77 K. The causes of the temperature dependence are at least qualitatively understood.

© 2009 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3500) Lasers and laser optics : Lasers, erbium
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 4, 2009
Revised Manuscript: March 26, 2009
Manuscript Accepted: April 3, 2009
Published: April 15, 2009

Citation
Nikolay Ter-Gabrielyan, Mark Dubinskii, G. A. Newburgh, Arockiasamy Michael, and Larry D. Merkle, "Temperature Dependence of a Diode-Pumped Cryogenic Er:YAG Laser," Opt. Express 17, 7159-7169 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-9-7159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, "115-W Tm:YAG Diode-Pumped Solid-State Laser," IEEE J. Quantum Electron. 33, 1592-1600 (1997).
  2. P. A. Budni, M. L. Lemons, J. R. Mosto, and E. P. Chicklis, "High-Power/High-Brightness Diode-Pumped 1.9-µm Thulium and Resonantly Pumped 2.1-µm Holmium Lasers," IEEE J. Sel. Top. In Quantum Electron. 6, 629-635 (2000).
  3. T. Y. Fan, "Heat Generation in Nd:YAG and Yb:YAG," IEEE J. Quantum Electron. 29, 1457-1459 (1993).
  4. W. F. Krupke, "Ytterbium Solid-State Lasers - The First Decade," IEEE J. Sel. Top. Quantum Electron. 6, 1287-1296 (2000) and references therein.
  5. Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. P. Chicklis, "Efficient 1645-nm Er:YAG laser," Opt. Lett. 29, 1075-1077 (2004). [PubMed]
  6. S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, "Resonantly Pumped Eyesafe Erbium Lasers," IEEE J. Sel. Top. Quantum Electron. 11, 645-657 (2005).
  7. S. D. Setzler, M. W. Francis, and E. P. Chicklis, "A 100 mJ Q-switched 1645 nm Er:YAG Laser," SPIE Defense and Security Symposium, paper 6552-17 (2007).
  8. D. Garbuzov, I. Kudryashov, and M. Dubinskii, "Resonantly diode laser pumped 1.6-µm-erbium-doped yttrium aluminum garnet solid-state laser," Appl. Phys. Lett. 86, 131115 (2005).
  9. D. Garbuzov, I. Kudryashov, and M. Dubinskii, "110 W(0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-µm Er:YAG laser," Appl. Phys. Lett. 87, 121101 (2005).
  10. J. A. Zuclich, D. A. Gagliano, F. Cheney, B. E. Stuck, H. Zwick, P. Edsall, and D. J. Lund, "Ocular effects of penetrating IR laser wavelengths," SPIE 2391, 112-125 (1995).
  11. L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, "Coherent Oscillations from Tm3+, Ho3+, Yb3+ and Er3+ Ions in Yttrium Aluminum Garnet," Appl. Phys. Lett. 7, 127-129 (1965).
  12. R. L. Fork, W. W. Walker, R. L. Laycock, J. J. A. Green, and S. T. Cole, "Integrated diamond sapphire laser," Opt. Express 11, 2532-2548 (2003). [PubMed]
  13. D. C. Brown, "The Promise of Cryogenic Solid-State Lasers," IEEE J Sel. Top. Quantum Electron. 11, 587-599 (2005).
  14. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, "Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2 and KY(WO4)2 laser crystals in the 80-300 K temperature range," J. Appl. Phys. 98, 103514 (2005).
  15. T. Y. Fan, T. Crow, and B. Hoden, "Cooled Yb:YAG for high-power solid state lasers," SPIE 3381, 200-205 (1998).
  16. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, "Cryogenic Yb3+-Doped Solid-State Lasers," IEEE J. Sel. Top. Quantum Electron. 13,448-459 (2007).
  17. M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, "Ultra-Low Photon Defect Diode-Pumped Cryo-Cooled Er:YAG Laser," Proc. SPIE 6552, 65520M (2007).
  18. M. Dubinskii, N. Ter-Gabrielyan, G. A. Newburgh, and L. D. Merkle, "Ultra-Low-Photon-Defect Cryo-Laser Performance of Resonantly Diode-Pumped Er3+:YAG," Conference on Lasers and Electro-Optics 2007, paper CTuN1.
  19. N. Ter-Gabrielyan, L. D. Merkle, A. Ikesue, and M. Dubinskii, "Ultralow quantum-defect eye-safe Er3+:Sc2O3 Laser," Opt. Lett. 33, 1524-1526 (2008). [PubMed]
  20. R. D. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta Cryst. A 32, 751-767 (1976).
  21. J. B. Gruber, A. S. Nijjar, D. K. Sardar, R. M. Yow, C. RussellIII, T. H. Allik, and B. Zandi, "Spectral analysis and energy-level structure of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12", J. Appl. Phys. 97, 063519 (2005).
  22. D. K. Sardar, C. C. RussellIII, J. B. Gruber, and T. H. Allik, "Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er3+(4f11) in polycrystalline ceramic garnet Y3Al5O12," J. Appl. Phys. 97, 123501 (2005).
  23. A. A. Kaminskii, A. G. Petrosyan, G. A. Denisenko, T. I. Butaeva, V. A. Fedorov, and S. E. Sarkisov, "Spectroscopic Properties and 3 µm Stimulated Emission of Er3+ Ions in the (Y1-xErx)3Al5O12 and (Lu1-xErx)3Al5O12 Garnet Crystal Systems," Phys. Stat. Sol. (A) 71, 291-312 (1982).
  24. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, "Infrared Cross-Section Measurements for Crystals Doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992).
  25. J. A. Koningstein and J. E. Geusic, "Energy Levels and Crystal-Field Calculations of Er3+ in Yttrium Aluminum Garnet," Phys. Rev. 136, A726-A728 (1964).
  26. M. Kh. Ashurov, Yu. K. Voronko, V. V. Osiko, A. A. Sobol, B. P. Starikov, M. I. Timoshechkin, and A. Ya. Yablonskii, "Inequivalent Luminescence Centres of Er3+ in Gallium Garnet Single Crystals," Phys. Stat. Sol. (A) 35, 645-649 (1976).
  27. J. B. Gruber, J. R. Quaqliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, "Energy levels and correlation crystal-field effects in Er3+-doped garnets," Phys. Rev. B 48, 15561-15573 (1993).
  28. B. F. Aull and H. P. Jenssen, "Vibronic Interactions in Nd:YAG Resulting in Nonreciprocity of Absorption and Stimulated Emission Cross Sections," IEEE J. Quantum Electron. 18, 925-930 (1982).
  29. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes (CRC Press, Boca Raton, FL, 1996), 188.
  30. R. J. Beach, "CW Theory of quasi-three level end-pumped laser oscillators," Opt. Commun. 123, 385-393 (1995).
  31. J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, "Resonant pumping and upconversion in 1.6 µm Er3+ lasers," J. Opt. Soc. A B 24, 2454-2460 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited