OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7170–7185

Evanescent modes in out-of-plane band structure for two-dimensional photonic crystals

Jakob Blad and Aasmund S. Sudbø  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7170-7185 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (388 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Reflection, diffraction and transmission of optical waves at the interface between a photonic crystal and the surrounding air can be described by propagating and evanescent Bloch modes. We have found such modes for one of the canonical two-dimensional photonic crystals, identical circular cylinders in a square pattern. We present computed out-of-plane band diagrams for propagating as well as evanescent modes, obtained with a numerical method based on Fourier-Bessel expansions. For a given frequency, all the modes are evanescent, except for a few low-order propagating modes. We find that most of the evanescent modes have a purely imaginary z-component of the Bloch wave vector, but many of the modes have a complex z-component.

© 2009 Optical Society of America

OCIS Codes
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(050.5298) Diffraction and gratings : Photonic crystals
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: February 24, 2009
Revised Manuscript: April 6, 2009
Manuscript Accepted: April 10, 2009
Published: April 15, 2009

Jakob Blad and Aasmund S. Sudbø, "Evanescent modes in out-of-plane band structure for two-dimensional photonic crystals," Opt. Express 17, 7170-7185 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Hadzialic, S. Kim, A. Sudbo, and O. Solgaard, "Displacement Sensing with a Mechanically Tunable Photonic Crystal," in The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, pp. 345-346 (IEEE, 2007).
  2. S. Kim, S. Hadzialic, A. Sudbo, and O. Solgaard, "Single-film Broadband Photonic Crystal Micro-mirror with Large Angular Range and Low Polarization Dependence," in Conference on Lasers and Electro-optics (CLEO 2007). Baltimore, Maryland, USA, paper CThP7.
  3. D. M. Whittaker and I. S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999). [CrossRef]
  4. FIMMPROP, Photon Design, Oxford, United Kingdom. http://www.photond.com.
  5. K. A. Zaki, S.-W. Chen, and C. Chen, "Modeling Discontinuities in Dielectric-Loaded Waveguides," IEEE Trans. Microwave Theory Tech. 36, 1804-1810 (1988). [CrossRef]
  6. M. Davanc¸Y. Urzhumov, and G. Shvets, "The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction," Opt. Express 15, 9681-9691 (2007). [CrossRef] [PubMed]
  7. K. C. Huang, E. Lidorikis, X. Jiang, J. D. Joannopoulos, K. A. Nelson, P. Bienstman, and S. Fan, "Nature of lossy Bloch states in polaritonic photonic crystals," Phys. Rev. B 69, 195,111 (2004). [CrossRef]
  8. H. van der Lem, A. Tip, and A. Moroz, "Band structure of absorptive two-dimensional photonic crystals," Solid State Commun. 129, 475-478 (2004).
  9. R. Smaâli, D. Felbacq, and G. Granet, "Bloch waves and non-propagating modes in photonic crystals," Physica E 18, 443-451 (2003). [CrossRef]
  10. Y.-C. Hsue and T.-J. Yang, "Applying a modified plane-wave expansion method to the calculations of transmittivity and reflectivity of a semi-infinite photonic crystal," Phys. Rev. B 70, 016,706 (2004).
  11. E. Istrate, A. A. Green, and E. H. Sargent, "Behavior of light at photonic crystal interfaces," Phys. Rev. B 71, 195,122 (2005). [CrossRef]
  12. Y.-C. Hsue, A. J. Freeman, and B.-Y. Gu, "Extended plane-wave expansion method in three-dimensional anisotropic photonic crystals," Phys. Rev. B 72, 195,118 (2005). [CrossRef]
  13. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, New Jersey, 2008).
  14. N. N. Rao, Elements of Engineering Electromagnetics (Prentice Hall, 2004).
  15. A. S. Sudbo, "Improved formulation of the film mode matching method for mode field calculations in dielectric waveguides," Pure Appl. Opt. 3, 381-388 (1994). [CrossRef]
  16. S. Peng and G. M. Morris, "Resonant scattering from two-dimensional gratings," J. Opt. Soc. Am. A 13, 993-1005 (1996). [CrossRef]
  17. K. C. Johnson, "Grating Diffraction Calculator (GD-Calc®) - Coupled-Wave Theory for Biperiodic Diffraction Gratings," http://software.kjinnovation.com (2006).
  18. E. Yamashita, S. Ozeki, and K. Atsuki, "Modal analysis method for optical fibers with symmetrically distributed multiple cores," J. Lightwave Technol. 2, 341-346 (1985). [CrossRef]
  19. T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  20. K. Saitoh and M. Koshiba, "Numerical Modeling of Photonic Crystal Fibers," J. Lightwave Technol. 23, 3580-3590 (2005). [CrossRef]
  21. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic Crystal Fibers: A New Class of Optical Waveguides," Opt. Fiber Technol. 5, 305-330 (1999). [CrossRef]
  22. A. Ortega-Moñux, J. G. Wangüemert-Pérez, and I. Molina-Fernández, "Accurate Analysis of Photonic Crystal Fibers by Means of the Fast-Fourier-Based Mode Solver," IEEE Photon. Technol. Lett. 19, 414-416 (2007). [CrossRef]
  23. J.-M. Lourtioz, H. Benisty, V. Berger, J.-M. Gérard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices, chap. 2.3 (Springer-Verlag, Berlin Heidelberg, 2005).
  24. G. Tayeb and D. Maystre, "Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A 14, 3323-3332 (1997). [CrossRef]
  25. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  26. COMSOL Multiphysics®, COMSOL AB, Stockholm, Sweden. http://www.comsol.com.
  27. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in FDTD," Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]
  28. G. P. Agrawal, Fiber-Optic Communication Systems, chap. 2.2, 2nd ed. (John Wiley & Sons, New York, 1997).
  29. M. T. Heath, Scientific Computing: An Introductory Survey (McGraw-Hill, Singapore, 1997).
  30. A. S. Sudbo, "Why are accurate computations of mode fields in rectangular dielectric waveguides difficult?" J. Lightwave Technol. 10, 418-419 (1992). [CrossRef]
  31. S. Peng and G. M. Morris, "Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings," J. Opt. Soc. Am. A 12, 1087-1096 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited