OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7196–7205

Optical microfiber coil delay line

M. Sumetsky  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7196-7205 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (454 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The feasibility of a broadband, miniature, and low loss optical delay line composed of a coiled microfiber with several-micron radius is demonstrated theoretically. Under the introduced low-loss condition, the fundamental mode of the microfiber is shifted away and does not scatter from the interfaces with the central rod and adjacent turns. Dimensions of the designed 100 ns feedforward microfiber delay line containing 20 m of microfiber are 5 mm × 5 mm × 20 mm at the radiation wavelength 1.5 μm and can be much smaller for the recirculating loop delay line. These dimensions can be further optimized by varying the radii of the microfiber and coil. The predicted insertion loss of this device is ~ 0.004 dB/ns, which is two orders of magnitude smaller than the loss achieved presently for the miniature delay lines. A curved microfiber taper is proposed as a compact, low-loss, and broadband connection to this optical delay line. The taper adiabatically converts the input fundamental mode of a straight microfiber into the shifted mode of the coiled microfiber.

© 2009 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2340) Fiber optics and optical communications : Fiber optics components
(230.7370) Optical devices : Waveguides
(250.4745) Optoelectronics : Optical processing devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 2, 2009
Revised Manuscript: April 12, 2009
Manuscript Accepted: April 13, 2009
Published: April 15, 2009

M. Sumetsky, "Optical microfiber coil delay line," Opt. Express 17, 7196-7205 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. S. Tucker, "The Role of Optics and Electronics in High-Capacity Routers," J. Lightwave Technol. 26, 4655-4673 (2006). [CrossRef]
  2. E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, "A comparison of optical buffering technologies," Opt. Switch. Net. 5, 10-18 (2008). [CrossRef]
  3. J. B. Khurgin and R. Tucker, Eds., Slow Light: Science and Applications (CRC Press, 2008). [CrossRef]
  4. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, "Ultimate Q of optical microsphere resonators," Opt. Lett. 21,453-455 (1996). [CrossRef] [PubMed]
  5. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused-silica microspheres in the near infrared," Opt. Lett. 23, 247-249 (1998). [CrossRef]
  6. A. B. Matsko and V. S. Ilchenko, "Optical resonators with whispering-gallery modes-part I: basics," IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006). [CrossRef]
  7. V. S. Ilchenko and A. B. Matsko, "Optical resonators with whispering-gallery modes-part II: applications," IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006). [CrossRef]
  8. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003). [CrossRef] [PubMed]
  9. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip," Appl. Phys. Lett. 85, 6113-6115 (2004). [CrossRef]
  10. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, "Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics," Phys. Rev. A 71, 013817 (2005). [CrossRef]
  11. B. Min, L. Yang, and K. Vahala, "Perturbative analytic theory of an ultrahigh-Q toroidal microcavity," Phys. Rev. A 76, 013823 (2007). [CrossRef]
  12. M. Hossein-Zadeh and K. J. Vahala, "Free ultra-high-Q microtoroid: a tool for designing photonic devices," Opt. Express 15, 166-175 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-1-166. [CrossRef] [PubMed]
  13. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, "Optical delay lines based on optical filters," IEEE J. Quantum Electron. 37, 525-532 (2001). [CrossRef]
  14. K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, "Optical fiber delay-line signal processing," IEEE Trans. Microwave Theory Tech. 33, 193-210 (1985). [CrossRef]
  15. E. F. Burmeister, J. P. Mack, H. N. Poulsen, J. Klamkin, L. A. Coldren, D. J. Blumenthal, and J. E. Bowers, "SOA gate array recirculating buffer with fiber delay loop," Opt. Express 16, 8451-8456 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8451. [CrossRef] [PubMed]
  16. R. Adar, M. R. Serbin, and V. Mizrahi, "Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator," J. Lightwave Technol. 12, 1369-1372 (1994). [CrossRef]
  17. E. F. Burmeister, J. P. Mack, H. N. Poulsen, M. L. Mašanovic, B. Stameni?, D. J. Blumenthal, and J. E. Bowers, "Photonic integrated circuit optical buffer for packet-switched networks," Opt. Express 17, 6629-6635 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-6629. [CrossRef] [PubMed]
  18. M. Sumetsky, "Optical fiber microcoil resonator," Opt. Express 12, 2303-2316 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2303. [CrossRef] [PubMed]
  19. M. Sumetsky, "Basic elements for microfiber photonics: micro/nanofibers and microfiber coil resonators," J. Lightwave Technol. 26, 21-27 (2008). [CrossRef]
  20. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004), http://www.opticsinfobase.org/oe/ abstract.cfm?URI=oe-12-13-2864. [CrossRef] [PubMed]
  21. F. L. Kien, J. Q. Lianga, K. Hakuta, and V. I. Balykin, "Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber," Opt. Commun. 242, 445-455 (2004). [CrossRef]
  22. V. M. Babi? and V. S. Buldyrev, Short-Wavelength Diffraction Theory: Asymptotic Methods (Springer-Verlag, Berlin, 1991).
  23. It is assumed that the elasto-optic effects are removed by reflowing of the coiled microfiber so that the refractive index is isotropic.
  24. S. Schiller and R. L. Byer, "High-resolution spectroscopy of whispering gallery modes in large dielectric spheres," Opt. Lett. 16, 1138-1140 (1991). [CrossRef] [PubMed]
  25. V. S. Ilchenko, M. L. Gorodetsky, X. S. Yao, and L. Maleki, "Microtorus: a high-finesse microcavity with whispering-gallery modes," Opt. Lett. 26, 256-258 (2001). [CrossRef]
  26. M. Sumetsky, Y. Dulashko, and A. Hale, "Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer," Opt. Express 12, 3521-3531 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-15-3521. [CrossRef] [PubMed]
  27. J. D. Love and C. Durniak, "Bend Loss, Tapering, and Cladding-Mode Coupling in Single-Mode Fibers," IEEE Photon. Technol. Lett. 19, 1257-1259 (2007). [CrossRef]
  28. L. Yao, T. A. Birks, and J. C. Knight, "Low bend loss in tightly-bent fibers through adiabatic bend transitions," Opt. Express 17, 2962-2967 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2962. [CrossRef] [PubMed]
  29. A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman & Hall, London, 1983).
  30. M. Sumetsky, "How thin can a microfiber be and still guide light?," Opt. Lett. 31, 870-872 (2006). [CrossRef] [PubMed]
  31. Heiblum and J. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE J. Quantum Electron. 11, 75- 83 (1975). [CrossRef]
  32. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The Microfiber Loop Resonator: Theory, Experiment, and Application," J. Lightwave Technol. 24, 242-250 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited