OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7222–7227

High-energy wave-breaking-free pulse from all-fiber mode-locked laser system

Xiaolong Tian, Ming Tang, Xueping Cheng, Perry Ping Shum, Yandong Gong, and Chinlon Lin  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7222-7227 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (157 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated an all-fiber mode-locked laser system which generated high-energy wave-breaking-free pulses with low repetition rate. The system included a passively mode-locked fiber laser which acted as a master oscillator and an Yb-doped fiber amplifier. By increasing the cavity length of the laser, pulse energy could be significantly increased. According to different cavity length, wave-breaking-free pulse with 2.9 nJ ~ 6.9 nJ pulse energy and 870 kHz~187 kHz repetition rate has been achieved from the master oscillator. Over 4 μJ pulse can be obtained after amplification.

© 2009 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 21, 2009
Revised Manuscript: February 21, 2009
Manuscript Accepted: February 25, 2009
Published: April 16, 2009

Xiaolong Tian, Ming Tang, Xueping Cheng, Perry Ping Shum, Yandong Gong, and Chinlon Lin, "High-energy wave-breaking-free pulse from allfiber mode-locked laser system," Opt. Express 17, 7222-7227 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. D. Peterson and K. L. Schepler, "Timing modulation of a 40-MHz laser-pulse train for target ranging and identification," Appl. Opt. 42, 7191-7196 (2003). [CrossRef]
  2. O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, "Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control," Opt. Commun.  269,156-165 (2007). [CrossRef]
  3. A. I. Chernykh and S. K. Turitsyn, "Soliton and collapse regimes of pulse generation in passively mode-locking laser systems," Opt. Lett. 20, 398-401 (1995). [CrossRef] [PubMed]
  4. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett.  92, 213902.1-213902.4 (2004). [CrossRef]
  5. J. R. Buckley, F. Ö. Ilday, and F. W. Wise, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30, 1888-1890 (2005). [CrossRef] [PubMed]
  6. S. Zhou, D. G. Ouzounov, C. Sinclair, and F. W. Wise, "Generation of 400-fs solitons with 2-MHz repetition rate by a Yb fiber laser," in LEOS. IEEE 19, 209-210 (2006).
  7. J. R. Buckley, O. Ilday, H. Lim, and F. W. Wise, "Self-similar pulses as a route to low-repetition-rate femtosecond fiber lasers," in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThK7, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2004-CThK7. [PubMed]
  8. A. Chong, W. H. Renninger, and F. W. Wise, "Environmentally stable all-normal-dispersion femtosecond fiber laser," Opt. Lett. 33, 1071-1073 (2008). [CrossRef] [PubMed]
  9. K. Kieu and F. W. Wise, "All-fiber normal-dispersion femtosecond laser," Opt. Express 16, 11453-11458 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-15-11453. [CrossRef] [PubMed]
  10. M. A. Putnam, M. L. Dennis, I. N. DulingIII, C. G. Askins, and E. J. Friebele, "Broadband square-pulse operation of a passively mode-locked fiber laser for fiber Bragg grating interrogation," Opt. Lett. 23, 138-140 (1998). [CrossRef]
  11. S. Kobtsev, S. Kukarin, and Y. Fedotov, "Ultra-low repetition rate mode-locked fiber laser with high-energy pulses," Opt. Express 16, 21936-21941 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-26-21936. [CrossRef] [PubMed]
  12. L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-Based Ytterbium Mode-Locked Fiber Lasers," IEEE J. Sel. Top. Quantum Electron. 10, 129-136 (2004). [CrossRef]
  13. A. Chong, J. Buckley, W. Renninger and F. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express 14, 10095-10100 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-21-10095. [CrossRef] [PubMed]
  14. N. Akhmediev, Jose. M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys.Lett. A 372, 3124-3128 (2008). [CrossRef]
  15. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46-56 (1999). [CrossRef]
  16. R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40, 893-899 (2004). [CrossRef]
  17. C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, "Soliton fiber ring laser," Opt. Lett. 17, 417-419 (1992) [CrossRef] [PubMed]
  18. B. Ortaç, M. Plötner, J. Limpert, and A. Tünnermann, "Self-starting passively mode-locked chirped-pulse fiber laser," Opt. Express 15, 16794-16799 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16794. [CrossRef] [PubMed]
  19. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, "Wave breaking in nonlinear-optical fibers," J. Opt. Soc. Am. B 9, 1358-1361 (1992). [CrossRef]
  20. H. M. Zhao, Q. H. Lou, J. Zhou, F. P. Zhang, J. X. Dong, Y. R. Wei, and Z. J. Wang, "Stable pulse-compressed acousto-optic Q-switched fiber laser," Opt. Lett. 32, 2774-2776 (2007). [CrossRef] [PubMed]
  21. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-25-6088. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited