OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7269–7274

Fourier factorization with complex polarization bases in modeling optics of discontinuous bi-periodic structures

Roman Antos  »View Author Affiliations


Optics Express, Vol. 17, Issue 9, pp. 7269-7274 (2009)
http://dx.doi.org/10.1364/OE.17.007269


View Full Text Article

Enhanced HTML    Acrobat PDF (263 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The coupled wave theory dealing with optics of discontinuous two-dimensional (2D) periodic structures is reformulated by using Fourier factorization with complex polarization bases, which is a generalized implementation of the fast Fourier factorization rules. The modified approach yields considerably improved convergence properties, as shown on an example of a 2D quartz grating. The method can also be applied to the calculation of 2D photonic band structures or nonperiodic cylindrical devices, and can be generalized to elements with arbitrary cross-sections.

© 2009 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 6, 2009
Revised Manuscript: April 10, 2009
Manuscript Accepted: April 16, 2009
Published: April 17, 2009

Citation
Roman Antos, "Fourier factorization with complex polarization bases in modeling optics of discontinuous bi-periodic structures," Opt. Express 17, 7269-7274 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-9-7269


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Petit (ed.), Electromagnetic Theory of Gratings (Springer, 1980).
  2. M. Neviere and E. Popov, Light Propagation in Periodic Media: Diffraction Theory and Design (Marcel Dekker, New York, 2003).
  3. D. Maystre, "Rigorous vector theories of diffraction gratings," Prog. Opt. 21, 1-67 (1984). [CrossRef]
  4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ., 1995)
  5. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  6. L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A 13, 1870- 1876 (1996). [CrossRef]
  7. L. Li, "Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials," J. Mod. Opt. 45, 1313-1334 (1998). [CrossRef]
  8. B. Chernov, M. Neviere, and E. Popov, "Fast Fourier factorization method applied to modal analysis of slanted lamellar diffraction gratings in conical mountings," Opt. Commun. 194, 289-297 (2001). [CrossRef]
  9. E. Popov and M. Neviere, "Grating theory: new equations in Fourier space leading to fast converging results for TM polarization," J. Opt. Soc. Am. A 17, 1773-1784 (2000). [CrossRef]
  10. L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997). [CrossRef]
  11. K. Watanabe, R. Petit, and M. Neviere, "Differential theory of gratings made of anisotropic materials," J. Opt. Soc. Am. A 19, 325-334 (2002). [CrossRef]
  12. K. Watanabe, "Numerical integration schemes used on the differential theory for anisotropic gratings," J. Opt. Soc. Am. A 19, 2245-2252 (2002). [CrossRef]
  13. L. Li, "Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors," J. Opt. A 5, 345-355 (2003). [CrossRef]
  14. P. Boyer, E. Popov, M. Neviere, and G. Tayeb, "Diffraction theory in TM polarization: application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section," J. Opt. Soc. Am. A 21, 2146- 2153 (2004). [CrossRef]
  15. N. Bonod, E. Popov, M. Neviere, "Light transmission through a subwavelength microstructured aperture: electromagnetic theory and applications," Opt. Commun. 245, 355-361 (2005). [CrossRef]
  16. N. Bonod, E. Popov, M. Neviere, "Fourier factorization of nonlinear Maxwell equations in periodic media: application to the optical Kerr effect," Opt. Commun. 244, 389-398 (2005). [CrossRef]
  17. E. Noponen and J. Turunen, "Eigenmode method for electromagnetic synthesis of diffractive elements with three dimensional profiles," J. Opt. Soc. Am. A 11, 2494-2502 (1994). [CrossRef]
  18. S. Visnovsky and K. Yasumoto, "Multilayer anisotropic bi-periodic diffraction gratings," Czech. J. Phys. 51, 229-247 (2001). [CrossRef]
  19. R. Antos, S. Visnovsky, J. Mistrik, and T. Yamaguchi, "Magneto-optical polar-Kerr-effect spectroscopy on 2Dperiodic subwavelength arrays of magnetic dots," International Journal of Microwave and Optical Technology 1, 905-909 (2006).
  20. A. David, H. Benisty, and C. Weisbuch, "Fast factorization rule and plane-wave expansion method for twodimensional photonic crystals with arbitrary hole-shape," Phys. Rev. B 73, 075107 (2006). [CrossRef]
  21. T. Schuster, J. Ruoff, N. Kerwien, S. Rafler, andW. Osten, "Normal vector method for convergence improvement using the RCWA for crossed gratings," J. Opt. Soc. Am. A 24, 2880-2890 (2007). [CrossRef]
  22. P. Gotz, T. Schuster, K. Frenner, S. Rafler, and W. Osten, "Normal vector method for the RCWA with automated vector field generation," Opt. Express 16, 17295-17301 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17295. [CrossRef] [PubMed]
  23. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North Holland, 1997).
  24. N. P. K. Cotter, T. W. Preist, and J. R. Sambles, "Scattering matrix approach to multilayer diffraction," J. Opt. Soc. Am. A 12, 1097-1103 (1995). [CrossRef]
  25. L. Li, "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A 13, 1024-1035 (1996). [CrossRef]
  26. S. Kaushik, "Vector Fresnel equations and Airy formula for one-dimensional multilayer and surface-relief gratings," J. Opt. Soc. Am. A 14, 596-609 (1997). [CrossRef]
  27. R. Antos, J. Pistora, J. Mistrik, T. Yamaguchi, S. Yamaguchi, M. Horie, S. Visnovsky, and Y. Otani, "Convergence properties of critical dimension measurements by spectroscopic ellipsometry on gratings made of various materials," J. Appl. Phys. 100, 054906 (2006). [CrossRef]
  28. E. D. Palik (ed.), Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited