OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7285–7294

Noninvasive monitoring of cerebral blood oxygenation in ovine superior sagittal sinus with novel multi-wavelength optoacoustic system

I. Y. Petrova, Y. Y. Petrov, R. O. Esenaliev, D. J. Deyo, I. Cicenaite, and D. S. Prough  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7285-7294 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (229 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Noninvasive monitoring of cerebral blood oxygenation with an optoacoustic technique offers advantages over current invasive and noninvasive methods. We report the results of in vivo studies in the sheep superior sagittal sinus (SSS), a large central cerebral vein. We changed blood oxygenation by increasing and decreasing the inspired fraction of oxygen (FiO2). Optoacoustic measurements from the SSS were performed at wavelengths of 700, 800, and 1064 nm using an optical parametric oscillator as a source of pulsed near-infrared light. Actual oxygenation of SSS blood was measured with a CO-Oximeter in blood samples drawn from the SSS through a small craniotomy. The amplitude of the optoacoustic signal induced in the SSS blood at λ = 1064 nm closely followed the changes in blood oxygenation, at λ = 800 nm was almost constant, and at λ = 700 nm was changing in the opposite direction, all in accordance with the absorption spectra of oxy- and deoxyhemoglobin. The optoacoustically predicted oxygenation correlated well with actual blood oxygenation in sheep SSS (R2 = 0.965 to 0.990). The accuracy was excellent, with a mean difference of 4.8% to 9.3% and a standard deviation of 2.8% to 4.2%. To the best of our knowledge, this paper reports for the first time accurate measurements of cerebral venous blood oxygenation validated against the “gold standard” CO-Oximetry method.

© 2009 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.1460) Medical optics and biotechnology : Blood gas monitoring
(170.1610) Medical optics and biotechnology : Clinical applications
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: February 24, 2009
Revised Manuscript: March 14, 2009
Manuscript Accepted: March 16, 2009
Published: April 17, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

I. Y. Petrova, Y. Y. Petrov, R. O. Esenaliev, D. J. Deyo, I. Cicenaite, and D. S. Prough, "Noninvasive monitoring of cerebral blood oxygenation in ovine superior sagittal sinus with novel multi-wavelength optoacoustic system," Opt. Express 17, 7285-7294 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Soehle, M. Jaeger, and J. Meixensberger, "Online assessment of brain tissue oxygen autoregulation in traumatic brain injury and subarachnoid hemorrhage," Neurol. Res. 25, 411-417 (2003). [CrossRef] [PubMed]
  2. J. M. Murkin, "Perioperative detection of brain oxygenation and clinical outcomes in cardiac surgery," Semin. Cardiothorac. Vasc. Anesth. 8, 13-14 (2004). [CrossRef] [PubMed]
  3. W. J. Stevens, "Multimodal monitoring: head injury management using SjvO2 and LICOX," J. Neurosci. Nurs. 36, 332-339 (2004). [CrossRef]
  4. F. F. Jobsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264-1267 (1977). [CrossRef] [PubMed]
  5. J. H. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, "Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach," J. Biomed. Opt. 9, 221-229 (2004). [CrossRef] [PubMed]
  6. R. O. Esenaliev, K. V. Larin, I. V. Larina, M. Motamedi, and D. S. Prough, "Optoacoustic technique for non-invasive continuous monitoring of blood oxygenation," In Biomedical Topical Meetings (Optical Society of America, Washington DC, 2000), pp. 272-274.
  7. R. O. Esenaliev, I. V. Larina, K. V. Larin, D. E. Deyo, M. Motamedi, and D. S. Prough, "Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study," Appl. Opt. 41, 4722-4731 (2002). [CrossRef] [PubMed]
  8. Y. Y. Petrov, D. S. Prough, D. E. Deyo, M. Klasing, M. Motamedi, and R. O. Esenaliev, "Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: an in vivo study in sheep," Anesthesiology 102, 69-75 (2005). [CrossRef]
  9. Y. Y. Petrov, I. Y. Petrova, I. Patrikeev, R. O. Esenaliev, and D. S. Prough, "Multiwavelength optoacoustic system for noninvasive monitoring of cerebral venous oxygenation: a pilot clinical test in the internal jugular vein," Opt. Lett. 31, 1827-1829 (2006). [CrossRef] [PubMed]
  10. H. P. Brecht, D. S. Prough, Y. Y. Petrov, I. Patrikeev, I. Y. Petrova, D. J. Deyo, I. Cicenaite, and R. O. Esenaliev, "In vivo monitoring of blood oxygenation in large veins with a triple-wavelength optoacoustic system," Opt. Express 15, 16261-16269 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-16261. [CrossRef] [PubMed]
  11. X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 024015 (9 pages). [PubMed]
  12. C. Metz, M. Holzschuh, T. Bien, C. Woertgen, R. Rothoerl, B. Kallenbach, K. Taeger, and A. Brawanski, "Monitoring of cerebral oxygen metabolism in the jugular bulb: reliability of unilateral measurements in severe head injury," J. Cereb. Blood Flow Metab. 18, 332-343 (1998). [CrossRef] [PubMed]
  13. G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, "Optical and acoustical properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics," Phys. Med. Biol. 50, N141-N153 (2005). [PubMed]
  14. W. - F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  15. B. L. Horecker, "The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions," J. Biol. Chem. 148, 173-183 (1943).
  16. Y. Y. Petrov, D. S. Prough, D. J. Deyo, I. Y. Petrova, M. Motamedi, and R. O. Esenaliev, "In vivo noninvasive monitoring of cerebral blood oxygenation with optoacoustic technique," in Proceedings of the 26th Intern. Conf. of IEEE EMBS, (Institute of Electrical and Electronics Engineers, New York, 2004), pp. 2052-2054.
  17. J. Laufer, C. Elwell, D. Delpy, and P. Beard, "Pulsed near-infrared photoacoustic spectroscopy of blood," in Photons Plus Ultrasound: Imaging and Sensing, A. A. Oraevsky and L. V. Wang, eds., Proc. SPIE 5320, 57-68 (2004).
  18. S. Jacques, "Optical absorption of melanin," Oregon Medical Laser Center, http://omlc.ogi.edu/spectra/melanin/mua.html.
  19. G. M. Hale and M. R. Querry, "Optical constants of water in the 200nm to 200µm wavelength region," Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  20. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, "Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique," Phys. Med. Biol. 43, 2465-2478 (1998). [CrossRef] [PubMed]
  21. V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis (SPIE Press, Bellingham, WA, 2000).
  22. "ANSI Z136.1 - 2000" in American national standard for safe use of lasers (The Laser Institute of America, Orlando, FL, 2000).
  23. P. Taroni, D. Comelli, A. Farina, A. Pifferi, and A. Kienle, "Time-resolved diffuse optical spectroscopy of small tissue samples," Opt. Express 15, 3301-3311 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-3301. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited