OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7295–7303

Slot-waveguide cavities for optical quantum information applications

Mark P. Hiscocks, Chun-Hsu Su, Brant C. Gibson, Andrew D. Greentree, Lloyd C. L. Hollenberg, and François Ladouceur  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7295-7303 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1159 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To take existing quantum optical experiments and devices into more practical regimes requires the construction of robust, solid-state implementations. In particular, to observe the strong-coupling regime of atom-photon interactions requires very small cavities and large quality factors. Here we show that the slot-waveguide geometry recently introduced for photonic applications is also promising for quantum optical applications in the visible regime. We study diamond- and GaP-based slot-waveguide cavities (SWCs) compatible with diamond colour centres e.g. nitrogen-vacancy (NV) defect. We show that one can achieve increased single-photon Rabi frequencies of order O(1011) rad s-1 in ultra-small cavity modal volumes, nearly 2 orders of magnitude smaller than previously studied diamond-based photonic crystal cavities.

© 2009 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Optical Devices

Original Manuscript: March 13, 2009
Revised Manuscript: April 9, 2009
Manuscript Accepted: April 9, 2009
Published: April 17, 2009

Mark P. Hiscocks, Chun-Hsu Su, Brant C. Gibson, Andrew D. Greentree, Lloyd C. L. Hollenberg, and François Ladouceur, "Slot-waveguide cavities for optical quantum information applications," Opt. Express 17, 7295-7303 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, New York, 1995).
  2. M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, "Strongly interacting polaritons in coupled arrays of cavities," Nat. Phys. 2, 849-855 (2006).
  3. A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, "Quantum phase transitions of light," Nature Phys. 2, 856-861 (2006).
  4. D. G. Angelakis, M. F. Santos, and S. Bose, "Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays," Phys. Rev. A 76, 031805(R) (2007).
  5. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, "Ultralow-threshold Raman laser using a spherical dielectric microcavity," Nature 415, 621-623 (2002). [PubMed]
  6. C. K. Law and H. J. Kimble, "Deterministic generation of a bit-stream of single-photon pulses," J. Mod. Opt. 44, 2067-2074 (1997).
  7. X. Maître, E. Hagley, G. Nogues, C. Wunderlich, P. Goy, M. Brune, J. M. Raimond, and S. Haroche, "Quantum memory with a single photon in a cavity," Phys. Rev. Lett. 79, 769-772 (1997).
  8. T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, "Decoherence, continuous observation, and quantum computing: A cavity QED model," Phys. Rev. Lett. 75, 3788-791 (1995); [PubMed]
  9. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature 414, 413-418 (2001). [PubMed]
  10. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003). [PubMed]
  11. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
  12. A. D. Greentree, B. A. Fairchild, F. M. Hossain, and S. Prawer, "Diamond integrated quantum photonics," Mater. Today 11, 22-31 (2008).
  13. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single-photons," Phys. Rev. Lett. 85, 290-293 (2000). [PubMed]
  14. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single photon quantum cryptography," Phys. Rev. Lett. 89, 187901 (2002). [PubMed]
  15. F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate," Phys. Rev. Lett. 93, 130501 (2004). [PubMed]
  16. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, "Room-temperature coherent coupling of single spins in diamond," Nat. Phys. 2, 408-413 (2006).
  17. C. L. Degen, "Scanning magnetic field microscope with a diamond single spin sensor," Appl. Phys. Lett. 92, 243111 (2008).
  18. J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, "Nanoscale magnetic sensing with an individual electronic spin in diamond," Nature 455, 644- 647 (2008). [PubMed]
  19. G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krüger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, "Nanoscale imaging magnetometry with diamond spins under ambient conditions," Nature 455, 648-651 (2008). [PubMed]
  20. J. H. Cole and L. C. L. Hollenberg, "Scanning quantum decoherence microscopy," http://arxiv.org/abs/0811.1913 (2008).
  21. C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, "Towards a picosecond transform-limited nitrogen-vacancy based single-photon source," Opt. Express 16, 6240 (2008). [PubMed]
  22. T. P Spiller, K. Nemoto, S. L. Braunstein, W. J. Munro, P. van Loock, and G. J. Milburn, "Quantum computation by communication," New J. Phys. 8, 30 (2006).
  23. C.-H. Su, A. D. Greentree, W. J. Munro, K. Nemoto, and L. C. L. Hollenberg, "High-speed quantum gates with cavity quantum electrodynamics," Phys. Rev. A 78, 062336 (2008).
  24. A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms," Phys. Rev. A 73, 013818 (2006).
  25. A. M. Stephens, Z. W. E. Evans, S. J. Devitt, A. D. Greentree, A. G. Fowler, W. J. Munro, J. L. O’Brien, K. Nemoto, and L. C. L. Hollenberg, "Deterministic optical quantum computer using photonic modules," Phys. Rev. A 78, 032318 (2008).
  26. S. J. Devitt, A. G. Fowler, A. M. Stephens, A. D. Greentree, L. C. L. Hollenberg, W. J. Munro, and K. Nemoto, "Topological cluster state computation with photons," http://arxiv.org/abs/0808.1782 (2008).
  27. G. Davies and M. F. Hamer, "Optical studies of the 1.945eV vibronic band in diamond," Proc. R. Soc. Lond. A: Math. and Phys. Sci. 348,285-298 (1976).
  28. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, "Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond," Appl. Phys. Lett. 91, 201112 (2007).
  29. S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and J. Salzman, "Diamond based photonic crystal microcavities," Opt. Express 14, 3556-3562 (2006). [PubMed]
  30. I. Bayn and J. Salzman, "High-Q photonic crystal nanocavities on diamond for quantum electrodynamics," Eur. Phys. J. Appl. Phys. 37, 19-24 (2007).
  31. C. Kreuzer, J. Riedrich-Möller, E. Neu, and C. Becher, "Design of photonic crystal microcavities in diamond films," Opt. Express 16, 1632-1644 (2008). [PubMed]
  32. M. W. McCutcheon and M. Lon?ar, "Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal," Opt. Express 16, 19137-19145 (2008).
  33. I. Bayn, and J. Salzman, "Ultra high-Q photonic crystal nanocavity design: "The effect of a low-? slab material," Opt. Express 16, 4972-4980 (2008). [PubMed]
  34. S. Tomljenovic-Hanic, A. D. Greentree, C. Martijn de Sterke, and S. Prawer, "Design of flexible ultrahigh-Q microcavities in diamond-based photonic crystal slabs," Opt. Express 17, 6465-6475 (2009). [PubMed]
  35. E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J.-F. Roch, "Room temperature triggered single-photon source in the near infrared," New J. Phys. 9, 434 (2007).
  36. C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, "Single photon emission from SiV centres in diamond produced by ion implantation," J. Phys. B: At. Mol. Opt. Phys. 39, 37-41 (2006).
  37. I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, D. Simpson, A. D. Greentree, F. Treussart, J.-F. Roch, and S. Prawer, "A new, enhanced diamond single photon emitter in the near infra-red," http://arxiv.org/abs/0902.3051 (2009).
  38. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209 (2004). [PubMed]
  39. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004). [PubMed]
  40. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, "Ultrasmall mode volumes in dielectric optical microcavities," Phys. Rev. Lett. 95, 143901 (2005). [PubMed]
  41. R. Sun, P. Dong, N. Feng, C. Hong, J. Michel, M. Lipson, and L. Kimerling, "Horizontal single and multiple slot waveguides: optical transmission at ? = 1550 nm," Opt. Express 15, 17967-17972 (2007). [PubMed]
  42. A. Gondarenko and M. Lipson, "Low modal volume dipole-like dielectric slab resonator," Opt. Express 16, 17689 (2008). [PubMed]
  43. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, "Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors," Opt. Lett. 32, 533-535 (2007). [PubMed]
  44. P. Velha, E. Picard, T. Charvolin, E. Hadji1, J. C. Rodier, P. Lalanne and D. Peyrade, "Ultra-High Q/V Fabry-Perot microcavity on SOI substrate," Opt. Express 15, 16090-16096 (2007). [PubMed]
  45. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge, 1997).
  46. N. B. Manson, J. P. Harrison, and M. J. Sellars, "Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics," Phys. Rev. B 74, 104303 (2006).
  47. D. E. Aspnes and A. A. Studna, "Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV," Phys. Rev. B 27, 985-1009 (1983).
  48. FIMMWAVE, Photon Design, http://www.photond.com.
  49. G. Cui and M. Raymer, "Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime," Opt. Express 13, 9660-9665 (2005). [PubMed]
  50. K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, "Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide," Appl. Phys. Lett. 93, 234107 (2008).
  51. J. Butler and A. V. Sumant, "The CVD of nanodiamond materials," Chem. Vapor Depos. 14, 145-160 (2008).
  52. P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, S. Prawer, "Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond," Adv. Mater. 17, 2427-2430 (2005).
  53. B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson and S. Prawer, "Fabrication of ultrathin single-crystal diamond membranes," Adv. Mater. 20, 4793-4798 (2008).
  54. M. P. Hiscocks, K. Ganesan, B. C. Gibson, S. T. Huntington, F. Ladouceur and S. Prawer, "Diamond waveguides fabricated by reactive ion etching," Opt. Express 16, 19512-19519 (2008). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited