OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7458–7464

Enhanced quantum efficiency of the visible light photon counter in the ultraviolet wavelengths

Kyle S. McKay, Jungsang Kim, and Henry H. Hogue  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7458-7464 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The visible light photon counter (VLPC) is a very high quantum efficiency (QE, 88% at 694 nm) single photon detector in the visible wavelengths. The QE in the ultraviolet (UV) wavelenghths is poor in these devices due to absorption in the degenerate front contact. We introduce the ultraviolet photon counter (UVPC), where the QE in the near UV wavelength range (300-400 nm) is dramatically enhanced. The degenerate Si front contact of the VLPC is replaced with a Ti Schottky contact, which reduces the absorption of incident photons within the contact layer. We demonstrate a system QE of 5.3% at 300 nm and 11% at 370 nm for a UVPC with a Ti Schottky contact and a single layer MgF2 antireflection coating.

© 2009 Optical Society of America

OCIS Codes
(040.3780) Detectors : Low light level
(040.5160) Detectors : Photodetectors
(040.7190) Detectors : Ultraviolet

ToC Category:

Original Manuscript: February 19, 2009
Revised Manuscript: April 19, 2009
Manuscript Accepted: April 19, 2009
Published: April 21, 2009

Kyle S. McKay, Jungsang Kim, and Henry H. Hogue, "Enhanced quantum efficiency of the visible light photon counter in the ultraviolet wavelengths," Opt. Express 17, 7458-7464 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl. Opt. 35, 1956-1976 (1996). [CrossRef] [PubMed]
  2. V. Zworykin, G. Morton, and L. Malter, "The secondary emission multiplier-a new electronic device," Proc. IRE 24, 351-375 (1936). [CrossRef]
  3. G. B. Turner,M. G. Stapelbroek, M. D. Petroff, E.W. Atkins, and H. H. Hogue, "Visible light photon counters for scintillating fiber applications: I. characteristics and performances," in Workshop on Scintillating Fiber Detectors, (1993), pp. 613-620.
  4. M. G. Stapelbroek and M. D. Petroff, "Visible light photon counters for scintillating fiber applications: II. principles of operation," in Workshop on Scintillating Fiber Detectors, (1993), pp. 621-629.
  5. S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, "Development of a high-quantum-efficiency single-photon counting system," Appl. Phys. Lett. 74, 1063-1065 (1999). [CrossRef]
  6. J. Kim, Y. Yamamoto, and H. H. Hogue, "Noise-free avalanche multiplication in Si solid state photomultipliers," Appl. Phys. Lett. 70, 2852-2854 (1997). [CrossRef]
  7. E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, "High-efficiency photon-number detection for quantum information processing," IEEE J. Sel. Top. Quantum Electron. 9, 1502-1511 (2003). [CrossRef]
  8. J. Kim and C. Kim, "Integrated optical approach to trapped ion quantum computation," Quant. Inf. Comput. 9, 181-202 (2009).
  9. P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, "Quantum interference of photon pairs from two remote trapped atomic ions," Nature Phys. 3, 538-541 (2007). [CrossRef]
  10. D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, "Experimental issues in coherent quantum-state manipulation of trapped atomic ions," J. Res. Natl. Inst. Stand. Technol. 103, 259-328 (1998).
  11. G. E. JellisonJr. and F. A. Modine, "Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry," J. Appl. Phys. 53, 3745-3753 (1982). [CrossRef]
  12. S.-D. Kim, C.-M. Park, and J. C. Woo, "Advanced source/drain engineering for box-shaped ultrashallow junction formation using laser annealing and pre-amorphization implantation in sub-100 nm SOI CMOS," IEEE Trans. Electron. Devices 49, 1748-1754 (2002). [CrossRef]
  13. J. Venturini, M. Hernandez, G. Kerrien, C. Laviron, D. Camel, J. L. Santailler, T. Sarnet, and J. Boulmer, "Excimer laser thermal processing of ultra-shallow junction: laser pulse duration," Thin Solid Films 453-454, 145-149 (2004). [CrossRef]
  14. J. Blacksberg, M. E. Hoenk, S. T. Elliott, S. E. Holland, and S. Nikzad, "Enhanced quantum efficiency of highpurity silicon imaging detectors by ultralow temperature surface modification using Sb doping," Appl. Phys. Lett. 87, 254101 (2005). [CrossRef]
  15. J. Liu, C. R. Ortiz, Y. Zhang, H. Bakhru, and J. W. Corbett, "Effects of hydrogen on the barrier height of a titanium Schottky diode on p type silicon," Phys. Rev. B 44, 8918-8922 (1991). [CrossRef]
  16. M. A. Taubenblatt, D. Thomson, and C. R. Helms, "Interface effects in titanium and hafnium Schottky barriers on silicon," Appl. Phys. Lett. 44, 895-897 (1984). [CrossRef]
  17. S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, Inc., New York, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited