OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7505–7518

Global optimization of silicon photovoltaic cell front coatings

Michael Ghebrebrhan, Peter Bermel, Yehuda Avniel, John D. Joannopoulos, and Steven G. Johnson  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7505-7518 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (4304 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The front-coating (FC) of a solar cell controls its efficiency, determining admission of light into the absorbing material and potentially trapping light to enhance thin absorbers. Single-layer FC designs are well known, especially for thick absorbers where their only purpose is to reduce reflections. Multilayer FCs could improve performance, but require global optimization to design. For narrow bandwidths, one can always achieve nearly 100% absorption. For the entire solar bandwidth, however, a second FC layer improves performance by 6.1% for 256 μm wafer-based cells, or by 3.6% for 2 μm thin-film cells, while additional layers yield rapidly diminishing returns.

© 2009 Optical Society of America

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: February 10, 2009
Revised Manuscript: March 20, 2009
Manuscript Accepted: March 21, 2009
Published: April 22, 2009

Michael Ghebrebrhan, Peter Bermel, Yehuda Avniel, John D. Joannopoulos, and Steven G. Johnson, "Global optimization of silicon photovoltaic cell front coatings," Opt. Express 17, 7505-7518 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Zhao, A. Wang, M. Green, and F. Ferrazza, "Novel 19.8% efficient ’honeycomb’ textured multicrystalline and 24.4% monocrystalline silicon solar cells," Appl. Phys. Lett. 73, 1991-1993 (1998). [CrossRef]
  2. M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Noufi, "Progress Toward 20% Efficiency in Cu(In,Ga)Se2 Polycrystalline Thin-film Solar Cells," Prog. Photovolt: Res. Appl. 7, 311-316 (1999). [CrossRef]
  3. G. Was, V. Rotberg, D. Platts, and J. Bomback, "Optical properties of Ti and N implanted soda lime glass," Appl. Phys. Lett. 66, 142-144 (1995). [CrossRef]
  4. C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation," J. Appl. Phys. 83, 3323-3336 (1998). [CrossRef]
  5. S. Chaudhuri, D. Bhattacharyya, A. Maity, and A. Pal, "Surface coatings for solar application," Mater. Sci. Forum 246, 181-206 (1997). [CrossRef]
  6. C. Lampert, "International development and advances in solar selective absorbers," Proc. SPIE 3138, 134-145 (1997). [CrossRef]
  7. A. Chandra and M. Mishra, "Solar absorption behavior of multilayer stacks," Energ. Convers. Manage. 25, 387-390 (1985). [CrossRef]
  8. O. Abreu and G. Best, "Transmission, reflexion and absorption of visible radiation by the multiple covers of flat plate solar collectors," Sol. Energy Mater. 3, 371-380 (1980). [CrossRef]
  9. L. DeSandre, D. Song, H. MacLeod, M. Jacobson, and D. Osborn, "Thin-film multilayer filter designs for hybrid solar energy conversion systems," Proc. SPIE 562, 155-159 (1985).
  10. J. Schoen and E. Bucher, "Computer modeling of the performance of some metal/dielectric multilayers for hightemperature solar selective absorbers," Sol. Energy Mater. Sol. Cells 43, 59-65 (1996). [CrossRef]
  11. M. Farooq and M. Hutchins, "A novel design in composites of various materials for solar selective coatings," Sol. Energ. Mater. Sol. Cells 71, 523-535 (2002). [CrossRef]
  12. J. Sukmanowski, C. Paulick, O. Sohr, K. Andert, and F. Royer, "Light absorption enhancement in thin silicon layers," J. Appl. Phys. 88, 2484-2489 (2000). [CrossRef]
  13. J. Hanak, V. Korsun, and J. Pellicane, "Optimization studies of materials in hydrogenated amorphous silicon solar cells," No. 2nd in E.C. Photovoltaic Sol. Energ. Conf., pp. 270-277 (1979).
  14. M. Kuo, D. J. Poxson, Y. S. Kim, F.W. Mont, J. K. Kim, E. F. Schubert, and S. Lin, "Realization of a near-perfect antireflection coating for silicon solar energy utilization," Opt. Lett. 33, 2527-2529 (2008). [CrossRef] [PubMed]
  15. ASTMG173-03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, West Conshohocken, Pennsylvania, 2005). [PubMed]
  16. P. Nubile, "Analytical design of antireflection coatings for silicon photovoltaic devices," Thin Solid Films 342, 257-261 (1999). [CrossRef]
  17. J. Zhao and M. Green, "Optimized Antireflection Coatings for High-Efficiency Silicon Solar Cells," IEEE Trans. Electron Dev. 38, 1925 (1991). [CrossRef]
  18. F. Zhu, P. Jennings, J. Cornish, G. Hefter, and K. Luczak, "Optimal optical design of thin-film photovoltaic devices," Sol. Energ. Mat. Sol. Cells 49, 163-169 (1997). [CrossRef]
  19. M. Cid, N. Stem, C. Brunetti, A. Beloto, and C. Ramos, "Improvements in anti-reflection coatings for highefficiency silicon solar cells," Surf. Coat Technol. 106, 117-120 (1998). [CrossRef]
  20. H. Nagel, A. G. Aberle, and R. Hezel, "Optimised Antireflection Coatings for Planar Silicon Solar Cells using Remote PECVD Silicon Nitride and Porous Silicon Dioxide," Prog. Photovoltaics: Res. Appl. 7, 245-260 (1999). [CrossRef]
  21. B. Thornton and Q. Tran, "Optimum design of wideband selective absorbers with provision for specified included layers," Sol. Energy 20, 371-377 (1978). [CrossRef]
  22. C. Carniglia and J. Apfel, "Maximum reflectance of multilayer dielectric mirrors in the presence of slight absorption," J. Opt. Soc. Am. 70, 523-534 (1980). [CrossRef]
  23. D. Gibson and P. Lissberger, "Use of the concept of equivalent layers in the design of multilayer dielectric reflectors with minimum absorption," Optica Acta 27, 1295-1299 (1980). [CrossRef]
  24. R. Brendel, Thin-Film Crystalline Silicon Solar Cells (Wiley-VCH, Weinheim, Germany, 2003). [CrossRef]
  25. B. Richards, "Single-material TiO2 double-layer antireflection coatings," Sol. Energy Mat. Sol. Cells 79, 369-390 (2003). [CrossRef]
  26. A. Mahdjoub and L. Zighed, "New designs for graded refractive index antireflection coatings," Thin Solid Films 478, 299-304 (2005). [CrossRef]
  27. J. Zhao, A. Wang, P. Campbell, and M. A. Green, "A 19.8% Efficient Honeycomb Multicrystalline Silicon Solar Cell with Improved Light Trapping," IEEE Trans. Electron Dev. 46, 1978-1983 (1999). [CrossRef]
  28. M. Lipinski, P. Zieba, S. Kluska, M. Sokolowski, and H. Czternastek, "Optimization of SiNx:H layer for multicrystalline silicon solar cells," Opto-Electron.Rev. 12, 41-44 (2004).
  29. M. Agrawal and P. Peumans, "Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells," Opt. Express 16, 5385-5396 (2008). [CrossRef] [PubMed]
  30. L. Li, "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A 13, 1024-1035 (1996). [CrossRef]
  31. D. Whittaker and I. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999). [CrossRef]
  32. K. S. Yee, "Numerical solution of inital boundary value problems involving maxwell’s equations in isotropic media," IEEE Trans. Attennas Propag. AP-14, 302-307 (1966).
  33. J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys. 114, 185-200 (1994). [CrossRef]
  34. P. Bermel, C. Luo, L. Zeng, L. Kimerling, and J. D. Joannopoulos, "Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals," Opt. Express 15, 16,986-17,000 (2007). [CrossRef]
  35. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, The Art of Scientific Computing (Cambridge University Press, New York, 2007).
  36. A. H. G. R. Kan and G. T. Timmer, "Stochastic global optimization methods," Math. Program. 39, 27-78 (1987). [CrossRef]
  37. J. Nocedal, "Updating quasi-Newton matrices with limited storage," Math. Comput. 35, 773-782 (1980). [CrossRef]
  38. L. Luksan, "PLIS.FOR," Limited-memory BFGS method based on vector recurrences for large-scale unconstrained and box constrained minimization, URL http://www.uivt.cas.cz/ luksan/subroutines.html.
  39. S. Kucherenko and Y. Sytsko, "Application of deterministic low-discrepancy sequences in global optimization," Computational Optimization and Applications 30, 297-318 (2005). [CrossRef]
  40. P. Bratley and B. L. Fox, "Algorithm 659: Implementing Sobol’s quasirandom sequence generator," ACM Trans. Math. Soft. 14, 88-100 (1988). [CrossRef]
  41. S. Joe and F. Y. Kuo, "Remark on algorithm 659: Implementing Sobol’s quasirandom sequence generator," ACM Trans. Math. Soft. 29, 49-57 (2003). [CrossRef]
  42. J. M. Gablonsky and C. T. Kelley, "A locally-biased form of the DIRECT algorithm," J. Global Optim. 21(1), 27-37 (2001). [CrossRef]
  43. S. G. Johnson. URL http://ab-initio.mit.edu/nlopt.
  44. G. Strang, Computational Science and Engineering (Wellesley-Cambridge Press, Wellesley, MA, 2007).
  45. Y. Pirogov and A. Tikhonravov, "Resonance absorption of wave energy in asymmetrical multilayer structures," Radioelektronika 21, 15-20 (1978).
  46. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton, Princeton, NJ, 2008).
  47. J. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
  48. S. A. Campbell, Fabrication Engineering at the Micro- and Nanoscale (Oxford University Press, USA, 2008).
  49. W. Shockley and H. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells," J. Appl. Phys. 32, 510 (1961). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited