OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7571–7585

A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design

Changqing Li, Gregory S. Mitchell, Joyita Dutta, Sangtae Ahn, Richard M. Leahy, and Simon R. Cherry  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7571-7585 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1597 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a three dimensional (3D) multispectral fluorescence optical tomography small animal imaging system with an innovative geometry using a truncated conical mirror, allowing simultaneous viewing of the entire surface of the animal by an EMCCD camera. A conical mirror collects photons approximately three times more efficiently than a flat mirror. An x-y mirror scanning system makes it possible to scan a collimated excitation laser beam to any location on the mouse surface. A pattern of structured light incident on the small animal surface is used to extract the surface geometry for reconstruction. A finite element based algorithm is applied to model photon propagation in the turbid media and a preconditioned conjugate gradient (PCG) method is used to solve the large linear system matrix. The reconstruction algorithm and the system feasibility are evaluated by phantom experiments. These experiments show that multispectral measurements improve the spatial resolution of reconstructed images. Finally, an in vivo imaging study of a xenograft tumor in a mouse shows good correlation of the reconstructed image with the location of the fluorescence probe as determined by subsequent optical imaging of cryosections of the mouse.

© 2009 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(260.2510) Physical optics : Fluorescence

ToC Category:
Imaging Systems

Original Manuscript: February 10, 2009
Revised Manuscript: April 13, 2009
Manuscript Accepted: April 15, 2009
Published: April 23, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Changqing Li, Gregory S. Mitchell, Joyita Dutta, Sangtae Ahn, Richard M. Leahy, and Simon R. Cherry, "A three-dimensional multispectral fluorescence optical tomography imaging system for small animals based on a conical mirror design," Opt. Express 17, 7571-7585 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005). [CrossRef]
  2. M. Gurfinkel, S. Ke, X. X. Wen, C. Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Dis. Markers 19, 107-121 (2003).
  3. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005). [CrossRef] [PubMed]
  4. G. Zavattini, S. Vecchi, G. Mitchell, U. Weisser, R. M. Leahy, B. J. Pichler, D. J. Smith, and S. R. Cherry, "A hyperspectral fluorescence system for 3D in vivo optical imaging," Phys. Med. Biol. 51, 2029-2043 (2006). [CrossRef] [PubMed]
  5. E. Shives, Y. Xu, and H. B. Jiang, "Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye," Opt. Express 10, 1557-1562 (2002). [PubMed]
  6. S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, "Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue," Rev. Sci. Instrum. 79, 064302 (2008). [CrossRef] [PubMed]
  7. E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography," J. Opt. Soc. Am. A 21, 231-241 (2004). [CrossRef]
  8. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, "Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections," Opt. Lett. 32, 382-384 (2007). [CrossRef] [PubMed]
  9. S. V. Patwardhan, S. R. Bloch, S. Achilefu, and J. P. Culver, "Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice," Opt. Express 13, 2564-2577 (2005). [CrossRef] [PubMed]
  10. C. D'Andrea, L. Spinelli, D. Comelli, G. Valentini, and R. Cubeddu, "Localization and quantification of fluorescent inclusions embedded in a turbid medium," Phys. Med. Biol. 50, 2313-2327 (2005). [CrossRef] [PubMed]
  11. G. Wang, H. Shen, K. Duraiaj, X. Qian, and W. X. Cong, "The first bioluminescence tomography system for simultaneous acquisition of multiview and multispectral Data," Int. J. Biomed. Imaging 2006, 58601 (2006).
  12. H. Shen, A. Cong, X. Qian, W. Cong, and G. Wang, "A Cone-shaped Mirror-based 360 View Bioluminescence Tomography System," Joint Molecular Imaging Conference Abstract Book, (2007) Pg. 83. .
  13. A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, "Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons," J. Biomed. Opt. 11, 014007 (2006). [CrossRef] [PubMed]
  14. T. K. Dey, and S. Goswami, "Tight Cocone: A Water-tight Surface Reconstructor," J. Comp. Inform. Sci. Eng. 3, 302-307 (2003). [CrossRef]
  15. F. Fedele, J. P. Laible, and M. J. Eppstein, "Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation," J. Comput. Phys. 187, 597-619 (2003). [CrossRef]
  16. S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, "Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography," Phys. Med. Biol. 53, 3921-3942 (2008). [CrossRef] [PubMed]
  17. N. Iftimia, and H. B. Jiang, "Quantitative optical image reconstruction of turbid media by use of direct-current measurements," Appl. Opt. 39, 5256-5261 (2000). [CrossRef]
  18. Fluorescence SpectraViewer, www.invitrogen.com/site/us/en/home/support/Research-Tools/Fluorescence-SpectraViewer.html.
  19. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited