OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7615–7629

Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers

Tadashi Murao, Kunimasa Saitoh, and Masanori Koshiba  »View Author Affiliations


Optics Express, Vol. 17, Issue 9, pp. 7615-7629 (2009)
http://dx.doi.org/10.1364/OE.17.007615


View Full Text Article

Enhanced HTML    Acrobat PDF (1273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, detailed properties of bent solid-core photonic bandgap fibers (SC-PBGFs) are investigated. We propose an approximate equivalent straight waveguide (ESW) formulation for photonic bandgap (PBG) edges, which is convenient to see qualitatively which radiation (centripetal or centrifugal radiation) mainly occurs and the impact of bend losses for an operating wavelength. In particular, we show that cladding modes induced by bending cause several complete or incomplete leaky mode couplings with the core mode and the resultant loss peaks. Moreover, we show that the field distributions of the cladding modes are characterized by three distinct types for blue-edge, mid-gap, and red-edge wavelengths in the PBG, which is explained by considering the cladding Bloch states or resonant conditions without bending. Next, we investigate the structural dependence of the bend losses. In particular, we demonstrate the bend-loss dependence on the number of the cladding rings. Finally, by investigating the impacts of the order of PBG and the core structure on the bend losses, we discuss a tight-bending structure.

© 2009 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: March 9, 2009
Revised Manuscript: April 16, 2009
Manuscript Accepted: April 19, 2009
Published: April 23, 2009

Citation
Tadashi Murao, Kunimasa Saitoh, and Masanori Koshiba, "Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers," Opt. Express 17, 7615-7629 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-9-7615


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Knight, F. Luan, G. J. Pearce, A. Wang, T. A. Birks, and D. M. Bird, "Solid photonic bandgap fibres and applications," Jpn. J. Appl. Phys. 45, 6059-6063 (2006). [CrossRef]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  3. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  4. T. Murao, K. Saitoh, and M. Koshiba, "Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single-mode operation," Opt. Express 14, 2404-2412 (2006). [CrossRef] [PubMed]
  5. R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, "Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers," Opt. Express 14, 7974-7985 (2006). [CrossRef] [PubMed]
  6. F. Benabid, "Hollow-core photonic bandgap fibre: new light guidance for new science and technology," Phil. Trans. R. Soc. London 364, 3439-3462 (2006). [CrossRef] [PubMed]
  7. T. Murao, K. Saitoh, and M. Koshiba, "Structural optimization of air-guiding photonic bandgap fibers for realizing ultimate low loss waveguides," J. Lightwave Technol. 26, 1602-1612 (2008). [CrossRef]
  8. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003). [CrossRef] [PubMed]
  9. J. Lægsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A, Pure Appl. Opt. 6, 798-804 (2004). [CrossRef]
  10. T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. St. J. Russell, "Scaling laws and vector effects in bandgap-guiding fibres," Opt. Express 12, 69-74 (2004). [CrossRef] [PubMed]
  11. F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, "Identification of Bloch-modes in hollow-core photonic crystal fiber cladding," Opt. Express 15, 325-338 (2007). [CrossRef] [PubMed]
  12. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986). [CrossRef]
  13. K. J. Rowland, S. Afshar V., and T. M. Monro, "Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model," Opt. Express 16, 17935-17951 (2008). [CrossRef] [PubMed]
  14. P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12, 5424-5433 (2004). [CrossRef] [PubMed]
  15. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004). [CrossRef] [PubMed]
  16. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005). [CrossRef] [PubMed]
  17. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003). [CrossRef] [PubMed]
  18. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004). [CrossRef] [PubMed]
  19. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, Anwatti, J. Broeng, J. Li, and S. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004). [CrossRef] [PubMed]
  20. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005). [CrossRef]
  21. T. T. Alkeskjold and A. Bjarklev, "Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter," Opt. Lett. 32, 1707-1709 (2007). [CrossRef] [PubMed]
  22. A. Wang, A. K. George, and J. C. Knight, "Three-level neodymium fiber laser incorporating photonic bandgap fiber," Opt. Lett. 31, 1388-1390 (2006). [CrossRef] [PubMed]
  23. T. Taru, J. Hou, and J. C. Knight, "Raman gain suppression in all-solid photonic bandgap fiber," in proceedings of 2007 European Conference on Optical Communication (ECOC), 7.1.1 (2007).
  24. C. B. Olausson, C. I. Falk, J. K. Lyngs?, B. B. Jensen, K. T. Therkildsen, J. W. Thomsen, K. P. Hansen, A. Bjarklev, and J. Broeng, "Amplification and ASE suppression in a polarization-maintaining ytterbium-doped all-solid photonic bandgap fibre," Opt. Express 16, 13657-13662 (2008). [CrossRef] [PubMed]
  25. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. St. J. Russell, "Guidance properties of low-contrast photonic bandgap fibres," Opt. Express 13, 2503-2511 (2005). [CrossRef] [PubMed]
  26. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, "Bend loss in all-solid bandgap fibres," Opt. Express 14, 5688-5698 (2006). [CrossRef] [PubMed]
  27. V. Pureur, A. Bétourné, G. Bouwmans, L. Bigot, M. Douay, and Y. Quiquempois, "Bending Losses in all solid 2D photonic band-gap fibers: a limiting factor?," in proceedings of 2006 European Conference on Optical Communication (ECOC), We.P3.34 (2006).
  28. J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, and D. M. Bird, "An improved photonic bandgap fiber based on an array of rings," Opt. Express 14, 6291-6296 (2006). [CrossRef] [PubMed]
  29. A. Bétourné, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, "Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 ?m," Opt. Express 15, 316-324 (2007). [CrossRef] [PubMed]
  30. A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, "Improvements of solid-core photonic bandgap fibers by means of interstitial air holes," Opt. Lett. 32, 1719-1721 (2007). [CrossRef] [PubMed]
  31. K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, "Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends," Opt. Express 14, 11128-11141 (2006). [CrossRef] [PubMed]
  32. N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Holt, Rinehart, and Winston, 1976).
  33. M. Perrin, Y. Quiquempois, G. Bouwmans, and M. Douay, "Coexistence of total internal reflection and bandgap modes in solid core photonic bandgap fibre with interstitial air holes," Opt. Express 15, 13783-13795 (2007). [CrossRef] [PubMed]
  34. T. A. Birks, G. J. Pearce, and D. M. Bird, "Approximate band structure calculation for photonic bandgap fibres," Opt. Express 14, 9483-9490 (2006). [CrossRef] [PubMed]
  35. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005). [CrossRef] [PubMed]
  36. M. J. F. Digonnet, H. K. Kim, G. S. Kino, and S. Fan, "Understanding air-core photonic-bandgap fibers: Analogy to conventional fibers," J. Lightwave Technol. 23, 4169-4177 (2005). [CrossRef]
  37. Y. Li, C. Wang, T. A. Birks, and D. M. Bird, "Effective index method for all-solid photonic bandgap fibres," J. Opt. A 9, 858-861 (2007). [CrossRef]
  38. J. Olszewski, M. Szpulak, and W. Urba?czyk, "Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers," Opt. Express 13, 6015-6022 (2005). [CrossRef] [PubMed]
  39. Z. Zhang Y. Shi, B. Bian, and J. Lu, "Dependence of leaky mode coupling on loss in photonic crystal fiber with hybrid cladding," Opt. Express 16, 1915-1922 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited