OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7648–7657

Strong-field two-photon absorption in atomic cesium: an analytical control approach

Sangkyung Lee, Jongseok Lim, and Jaewook Ahn  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7648-7657 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (496 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have considered an analytical control of two-photon absorption process of atoms in the strong-field interaction regime. The experiment was performed on gaseous cesium atoms strongly interacting with a shaped laser-pulse from a femtosecond laser amplifier and a programmable pulse-shaper. When this shaped laser-pulse transfers the atomic population from the 6s ground state to the 8s excited state, we have found that both positively- and negatively-chirped laser pulses, compared with a Gaussian pulse, enhance this excitation in the strong-field regime of laser-atom interaction. This unusual phenomena is explained because the temporal shape of the laser intensity compensates the effect of dynamic Stark shift for the two-photon resonant condition to be optimally maintained. We provide analytic calculations using the strong-field phase matching, which show good agreement with the experiment.

© 2009 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Nonlinear Optics

Original Manuscript: March 17, 2009
Revised Manuscript: April 21, 2009
Manuscript Accepted: April 22, 2009
Published: April 23, 2009

Sangkyung Lee, Jongseok Lim, and Jaewook Ahn, "Strong-field two-photon absorption in atomic cesium: an analytical control approach," Opt. Express 17, 7648-7657 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Bergmann, H. Theuer, and B. W. Shore, "Coherent population transfer among quantum states of atoms and molecules," Rev. Mod. Phys. 70, 1003-1025 (1998). [CrossRef]
  2. M. Shapiro and P. Brumer, Principles of the Quantum Control of Molecular Processes, (Wiley, New York, 2003).
  3. D. J. Tanner and S. A. Rice, "Control of selectivity of chemical reaction via control of wavepacket evolution," J. Chem. Phys. 83, 5013-5018 (1985). [CrossRef]
  4. M. Shapiro and P. Brumer, "Laser control of product quantum state populations in unimoleular reactions," J. Chem. Phys. 84, 4103-4104 (1986). [CrossRef]
  5. R. S. Judson and H. Rabitz, "Teaching lasers to control molecules," Phys. Rev. Lett. 68, 1500-1503 (1992). [CrossRef] [PubMed]
  6. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000). [CrossRef]
  7. T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, "Controlling the shape of a quantum wavefunction," Nature 397, 233-235 (1999). [CrossRef]
  8. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Whither the future of controlling quantum phenomena?" Science 288, 824-828 (2000). [CrossRef] [PubMed]
  9. N. Dudovich, B. Dayan, S. M. Gallagher Faeder, and Y. Silberberg, "Transform-limited pulses are not optimal for resonant multiphoton transitions," Phys. Rev. Lett. 86, 47-50 (2001). [CrossRef] [PubMed]
  10. A. Monmayrant, B. Chatel, and B. Girard, "Quantum state measurement using coherent transients," Phys. Rev. Lett. 96, 103002 (2006). [CrossRef] [PubMed]
  11. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, "Femtosecond quantum control of molecular dynamics in the condensed phase," Phys. Chem. Chem. Phys. 9, 2470-2497 (2007). [CrossRef] [PubMed]
  12. D. Meshulach and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998). [CrossRef]
  13. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Stehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998). [CrossRef] [PubMed]
  14. R. J. Levis, G. M. Menkir, ande H. Rabits, "Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses," Science 292, 709-713 (2001). [CrossRef] [PubMed]
  15. C. Trallero-Herrero, J.L. Cohen, and T. Weinacht, "Strong-field atomic phase matching," Phys. Rev. Lett. 96, 063603 (2006). [CrossRef] [PubMed]
  16. H. Suchowski, A. Natan,B. D. Bruner, and Y. Silberberg, "Spatio-temporal coherent control of atomic systems: weak to strong field transition and breaking of symmetry in 2D maps," J. Phys. B 41, 074008 (2008). [CrossRef]
  17. D. Meschulach, and Y. Silberberg, "Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses," Phy. Rev. A. 60, 1287-1292 (1999). [CrossRef]
  18. Z. Amitay, A. Gandman, L. Chuntonov, and L. Rybak, "Multichannel selective femtosecond coherent control based on symmetry properties," Phys. Rev. Lett. 100, 193002 (2008). [CrossRef] [PubMed]
  19. N. Dudovich, T. Polack, A. Pe’er, and Y. Silberberg, "Simple route to strong-field coherent control," Phys. Rev. Lett. 94, 083002 (2005). [CrossRef] [PubMed]
  20. P. Meystre and M. SargentIII, Elements of Quantum Optics, 3rd ed. (Springer-Verlag, Berlin, 1991).
  21. A. Sieradzan, M. D. Havey, and M. S. Safronova, "Combined experimentl and theoretical study of the 6p2Pj ? 8s2S1/2 relative transiton matrix elements in atomic Cs," Phys. Rev. A 69, 022502 (2004). [CrossRef]
  22. P. Fendel, S. D. Bergeson, Th. Udem, and T. W. Hänsch, "Two-photon frequency comb spectroscopy of the 6s-8s transition in cesium," Opt. Lett. 32, 701-703 (2007). [CrossRef] [PubMed]
  23. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, "Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping," Opt. Lett. 25, 575-577 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited