OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7688–7693

Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy

Song Hu, Konstantin Maslov, and Lihong V. Wang  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7688-7693 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (417 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In vivo microcirculatory imaging facilitates the fundamental understanding of many major diseases. However, existing techniques generally require invasive procedures or exogenous contrast agents, which perturb the intrinsic physiology of the microcirculation. Here, we report on optical-resolution photoacoustic microscopy (OR-PAM) for noninvasive label-free microcirculatory imaging at cellular levels. For the first time, OR-PAM demonstrates quantification of hemoglobin concentration and oxygenation in single microvessels down to capillaries. Using this technique, we imaged several important yet elusive microhemodynamic activities—including vasomotion and vasodilation—in small animals in vivo. OR-PAM enables functional volumetric imaging of the intact microcirculation, thereby providing greatly improved accuracy and versatility for broad biological and clinical applications.

© 2009 Optical Society of America

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.5810) Microscopy : Scanning microscopy
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: February 26, 2009
Revised Manuscript: March 26, 2009
Manuscript Accepted: March 30, 2009
Published: April 24, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Song Hu, Konstantin Maslov, and Lihong V. Wang, "Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy," Opt. Express 17, 7688-7693 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Stern, "In vivo evaluation of microcirculation by coherent light scattering," Nature 254, 56-58 (1975). [CrossRef] [PubMed]
  2. J. E. Tooke, "Microvasculature in diabetes," Cardiovasc. Res. 32, 764-771 (1996). [CrossRef] [PubMed]
  3. B. I. Levy, G. Ambrosio, A. R. Pries, and H. A. Struijker-Boudier, "Microcirculation in hypertension: a new target for treatment?," Circulation 104, 735-740 (2001). [CrossRef] [PubMed]
  4. O. Bongard, H. Bounameaux, and B. Fagrell, "Effects of oxygen inhalation on skin microcirculation in patients with peripheral arterial occlusive disease," Circulation 86, 878-886 (1992). [PubMed]
  5. D. M. McDonald and P. Baluk, "Significance of blood vessel leakiness in cancer," Cancer Res. 62, 5381-5385 (2002). [PubMed]
  6. L. Kuo, M. J. Davis, M. S. Cannon, and W. M. Chilian, "Pathophysiological Consequences of Atherosclerosis Extend into the Coronary Microcirculation - Restoration of Endothelium-Dependent Responses by L-Arginine," Circ. Res. 70, 465-476 (1992). [PubMed]
  7. D. Hasdai, R. J. Gibbons, D. R. Holmes, Jr., S. T. Higano, and A. Lerman, "Coronary endothelial dysfunction in humans is associated with myocardial perfusion defects," Circulation 96, 3390-3395 (1997). [PubMed]
  8. C. Iadecola, "Neurovascular regulation in the normal brain and in Alzheimer's disease," Nat. Rev. Neurosci. 5, 347-360 (2004). [CrossRef] [PubMed]
  9. D. M. McDonald, and P. L. Choyke, "Imaging of angiogenesis: from microscope to clinic," Nature Med. 9, 713-725 (2003). [CrossRef] [PubMed]
  10. A. M. Iga, S. Sarkar, K. M. Sales, M. C. Winslet, and A. M. Seifalian, "Quantitating therapeutic disruption of tumor blood flow with intravital video microscopy," Cancer Res. 66, 11517-11519 (2006). [CrossRef] [PubMed]
  11. E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J. F. Le Gargasson, and E. Vicaut, "Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy," J. Vasc. Res. 41, 400-411 (2004). [CrossRef] [PubMed]
  12. D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, "Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex," Proc. Natl. Acad. Sci. USA 95, 15741-15746 (1998). [CrossRef] [PubMed]
  13. M. C. Pierce, D. J. Javier, and R. Richards-Kortum, "Optical contrast agents and imaging systems for detection and diagnosis of cancer," Int. J. Cancer 123, 1979-1990 (2008). [CrossRef] [PubMed]
  14. W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, "Orthogonal polarization spectral imaging: a new method for study of the microcirculation," Nature Med. 5, 1209-1212 (1999). [CrossRef] [PubMed]
  15. A. Bauer, S. Kofler, M. Thiel, S. Eifert, and F. Christ, "Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results," Anesthesiology 107, 939-945 (2007). [CrossRef] [PubMed]
  16. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotechnol. 24, 848-851 (2006). [CrossRef]
  17. H. F. Zhang, K. Maslov, and L. V. Wang, "In vivo imaging of subcutaneous structures using functional photoacoustic microscopy," Nature Protoc. 2, 797-804 (2007). [CrossRef]
  18. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, "Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries," Opt. Lett. 33, 929-931 (2008). [CrossRef] [PubMed]
  19. C. Aalkaer, and H. Nilsson, "Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells," Br. J. Pharmacol. 144, 605-616 (2005). [CrossRef]
  20. G. O. von Mering, C. B. Arant, T. R. Wessel, S. P. McGorray, C. N. Bairey Merz, B. L. Sharaf, K. M. Smith, M. B. Olson, B. D. Johnson, G. Sopko, E. Handberg, C. J. Pepine, and R. A. Kerensky, "Abnormal coronary vasomotion as a prognostic indicator of cardiovascular events in women: results from the National Heart, Lung, and Blood Institute-Sponsored Women's Ischemia Syndrome Evaluation (WISE)," Circulation 109, 722-725 (2004). [CrossRef] [PubMed]
  21. H. Nilsson, and C. Aalkjaer, "Vasomotion: mechanisms and physiological importance," Mol. Interv. 3, 79-89, 51 (2003). [CrossRef]
  22. S. Bertuglia, A. Colantuoni, G. Coppini, and M. Intaglietta, "Hypoxia- or hyperoxia-induced changes in arteriolar vasomotion in skeletal muscle microcirculation," Am. J. Physiol. 260, H362-372 (1991). [PubMed]
  23. K. Lorentz, A. Zayas-Santiago, S. Tummala, and J. J. Derwent, "Scanning laser ophthalmoscope-particle tracking method to assess blood velocity during hypoxia and hyperoxia," Adv. Exp. Med. Biol. 614, 253-261 (2008). [CrossRef] [PubMed]
  24. L. V. Wang, "Prospects of photoacoustic tomography," Med. Phys. 35, 5758-5767 (2008). [CrossRef]
  25. H. Fang, K. Maslov, and L. V. Wang, "Photoacoustic Doppler effect from flowing small light-absorbing particles," Phys. Rev. Lett. 99, 184501 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

Supplementary Material

» Media 1: AVI (16384 KB)     
» Media 2: AVI (23502 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited