OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 9 — Apr. 27, 2009
  • pp: 7717–7724

Crosstalk-free design for the intersection of two dielectric waveguides

Jingjing Li, David A. Fattal, and Raymond G. Beausoleil  »View Author Affiliations

Optics Express, Vol. 17, Issue 9, pp. 7717-7724 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (290 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an efficient method to reduce the crosstalk, reflection and radiation at the crossing of two dielectric waveguides in a on-chip optical interconnect network. By increasing the vertical thickness of the guides locally in the crossing region, we create better mode-matching interfaces that dramatically reduce losses. The idea is demonstrated using numerical simulations. More than 95% crosstalk power reduction and 90% reflection power reduction are observed, while the radiation power can be reduced by 40%. The method is compatible with the planar integrated circuit technique.

© 2009 Optical Society of America

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(230.3120) Optical devices : Integrated optics devices
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

Original Manuscript: March 10, 2009
Revised Manuscript: April 14, 2009
Manuscript Accepted: April 15, 2009
Published: April 24, 2009

Jingjing Li, David A. Fattal, and Raymond G. Beausoleil, "Crosstalk-free design for the intersection of two dielectric waveguides," Opt. Express 17, 7717-7724 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Christie and D. Stroobandt, "The interpretation and application of Rent’s rule," IEEE Trans. VLSI.Sys. 8, 639-648 (2000). [CrossRef]
  2. M. Anis, "Advanced IC technology - opportunities and challenges," in Circuits and Systems, IEEE International Symposiums, 776-779 (2008).
  3. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S.-Y. Wang, and R. S. Williams, "Nanoelectronic and nanophotonic interconnect," Proc. IEEE 96, 230-247 (2008). [CrossRef]
  4. Z. Gaburro, Silicon Photonics, Optical Interconnect (Springer-Verlag Berlin, Germany, 2004).
  5. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006). [CrossRef] [PubMed]
  6. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005). [CrossRef] [PubMed]
  7. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004). [CrossRef] [PubMed]
  8. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, "Tunable silicon microring resonator with wide free spectral range," Appl. Phys. Lett. 89, 071110 (2006). [CrossRef]
  9. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005). [CrossRef] [PubMed]
  10. Y. Kuo, Y. Lee, S. R. Y. Ge, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005). [CrossRef] [PubMed]
  11. S. Xiao, M. H. Khan, H. Shen, and M. Qi, "A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion," Opt. Express 15, 14,765-14,771 (2007). [CrossRef]
  12. Q. Xu, D. Fattal, and R. G. Beausoleil, "Silicon microring resonators with 1.5?m radius," Opt. Express 16, 4309-4315 (2008). [CrossRef] [PubMed]
  13. O. Dosunmu, D. D. Cannon, M. K. Emsley, L. C. Kimerling, and M. S. Unlu, "High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation," IEEE Photon. Technol. Lett. 17, 175-177 (2005). [CrossRef]
  14. A. Bhatnagar, C. Debaes, H. Thienpont, and D. A. B. Miller, "Receiverless detection schemes for optical clock distribution," Proc. SPIE 5359, 352-359 (2004). [CrossRef]
  15. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, "Low loss intersection of Si photonic wire waveguides," Japanese J. Appl. Phys. 43, 646-647 (2004). [CrossRef]
  16. W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, "Low-loss, low-cross-talk crossings for silicon-oninsulator nanophotonic waveguides," Opt. Lett. 32, 2801-2803 (2007). [CrossRef] [PubMed]
  17. P. Sanchis, J. V. Galn, A. Griol, J. Mart, M. A. Piqueras, and J. M. Perdigues, "Low-crosstalk in silicon-oninsulator waveguide crossings with optimized-angle," IEEE Photon. Technol. Lett. 19, 1583-1585 (2007). [CrossRef]
  18. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in FDTD," Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]
  19. http://ab-initio.mit.edu/wiki/index.php/Meep.
  20. R. E. Collin, Field theory of guided waves, 2nd Ed. (IEEE Press, Piscataway, NJ, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited