OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 1 — Jan. 4, 2010
  • pp: 102–107

Sub-nm resolution cavity enhanced micro-spectrometer

Bernardo B. C. Kyotoku, Long Chen, and Michal Lipson  »View Author Affiliations


Optics Express, Vol. 18, Issue 1, pp. 102-107 (2010)
http://dx.doi.org/10.1364/OE.18.000102


View Full Text Article

Enhanced HTML    Acrobat PDF (8019 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel on-chip spectrometer device using combined functionalities of a micro-ring resonator and a planar diffraction grating is proposed. We investigate the performance of this architecture by implementing it in a silicon-on-insulator platform. We experimentally demonstrate such a device with 100 channels, 0.1 nm channel spacing and a channel crosstalk less than -10 dB. The entire device occupies an area of less than 2 mm2. Based on our initial results we envision that this device enables the possibility of the realization of low-cost and high-resolution ultra-compact spectroscopy.

© 2010 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Spectroscopy

History
Original Manuscript: November 12, 2009
Revised Manuscript: December 9, 2009
Manuscript Accepted: December 14, 2009
Published: December 22, 2009

Citation
Bernardo B. C. Kyotoku, Long Chen, and Michal Lipson, "Sub-nm resolution cavity enhanced microspectrometer," Opt. Express 18, 102-107 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-1-102


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Nitkowski, L. Chen, and M. Lipson, "Cavity-enhanced on-chip absorption spectroscopy using microring resonators," Opt. Express 16, 11,930 (2008). [CrossRef]
  2. D. I. Ellis and R. Goodacre, "Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy," The Analyst 131, 875-885 (2006). [CrossRef] [PubMed]
  3. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Ultrasensitive Chemical Analysis by Raman Spectroscopy," Chem. Rev,  99, 2957-2976 (1999). [CrossRef]
  4. A. Mahadevan-Jansen, "Raman spectroscopy for the detection of cancers and precancers," J. Biomed. Opt. 1, 31 (1996). [CrossRef]
  5. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chipbased ultrafast optical oscilloscope," Nature 456, 81-4 (2008). [CrossRef] [PubMed]
  6. W. Yang, D. B. Conkey, B. Wu, D. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nat. Photonics 1, 331-335 (2007). [CrossRef]
  7. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415 (2002). [CrossRef]
  8. R. Marz and C. Cremer, "On the theory of planar spectrographs," J. Lightwave Technol. 10, 2017-2022 (1992). [CrossRef]
  9. J. Brouckaert, W. Bogaerts, S. Selvaraja, P. Dumon, R. Baets, and V. Thourhout, "Planar Concave Grating Demultiplexer With High Reflective Bragg Reflector Facets," IEEE Photon. Technol. Lett. 20, 309-311 (2008). [CrossRef]
  10. Z. Shi, S. He, and S. Member, "A Three-Focal-Point Method for the Optimal Design of a Flat-Top Planar Waveguide Demultiplexer," IEEE J. Sel. Top. Quantum Electron. 8, 1179-1185 (2002). [CrossRef]
  11. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, "A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides," Opt. Express 15, 2299 (2007). [CrossRef] [PubMed]
  12. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution," Electron. Lett. 26, 87 (1990). [CrossRef]
  13. T. Fukazawa, F. Ohno, and T. Baba, "Very Compact Arrayed-Waveguide-Grating Demultiplexer Using Si Photonic Wire Waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004). [CrossRef]
  14. S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, "Design of flat-field arrayed waveguide grating with three stigmatic points," Opt. Quantum Electron. 35, 783-790 (2003). [CrossRef]
  15. S.-T. Ho and D. Rafizadeh, "Semiconductor micro-resonator device," US Patent 6009115 (1999).
  16. M. Soltani, Q. Li, S. Yegnanrayanan, B. Momeni, A. A. Eftekhar and A. Adibi, "Large-scale Array of Small High-Q Microdisk Resonaotrs for On-chip Spectral Analysis," LEOS (2009).
  17. A. Vorckel, M. Monster, W. Henschel, P. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-oninsulator microring resonators for compact add-drop multiplexers," IEEE Photon. Techno. Lett. 15, 921-923 (2003). [CrossRef]
  18. C. Kaalund, "Critically coupled ring resonators for add-drop filtering," Opt. Commun. 237, 357-362 (2004). [CrossRef]
  19. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, "Low loss etchless silicon photonic waveguides," Opt. Express 17, 4752 (2009). [CrossRef] [PubMed]
  20. K. A. McGreer, "Theory of concave gratings based on a recursive definition of facet positions," Appl. Opt. 35, 5904 (1996). [CrossRef] [PubMed]
  21. N. Sherwood-Droz, H. Wang, L. Chen, B.G. Lee, A. Biberman, K. Bergman, and M. Lipson, "Optical 4x4 hitless silicon router for optical networks-on-chip (NoC)," Opt. Express 16, 15915 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited