OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 1 — Jan. 4, 2010
  • pp: 108–116

Dispersion Engineering with Leaky-Mode Resonant Photonic Lattices

Robert Magnusson, Mehrdad Shokooh-Saremi, and Xin Wang  »View Author Affiliations

Optics Express, Vol. 18, Issue 1, pp. 108-116 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (634 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the dispersion properties of leaky-mode resonance elements with emphasis on slow-light applications. Using particle swarm optimization, we design three exemplary bandpass leaky-mode devices. A single-layer silicon-on-insulator leaky-mode element shows a time-delay peak of ~8 ps at the resonance wavelength. A double membrane element exhibits an average delay of ~6 ps over ~0.75 nm spectral bandwidth with a relatively flat dispersion response. By cascading five double-membrane elements, we achieve an accumulative delay of ~30 ps with a very flat dispersion response over ~0.5 nm bandwidth. Thus, we show that delay elements based on leaky-mode resonance, by proper design, exhibit large amount of delay yet very flat dispersion over appreciable spectral bandwidths, making them potential candidates for optical buffers, delay lines, and switches.

© 2010 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.2790) Integrated optics : Guided waves
(260.2030) Physical optics : Dispersion
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Photonic Crystals

Original Manuscript: September 17, 2009
Revised Manuscript: October 20, 2009
Manuscript Accepted: November 5, 2009
Published: December 22, 2009

Robert Magnusson, Mehrdad Shokooh-Saremi, and Xin Wang, "Dispersion Engineering with Leaky-Mode Resonant Photonic Lattices," Opt. Express 18, 108-116 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton, 1995.
  2. A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th edition, Oxford University Press, New York, 2007.
  3. K. Sakoda, Optical Properties of Photonic Crystals, Springer-Verlag, Berlin, 2001.
  4. P. Vincent, M. Neviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop bands,” Appl. Phys. (Berl.) 20(4), 345–351 (1979). [CrossRef]
  5. L. Mashev, E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55(6), 377–380 (1985). [CrossRef]
  6. E. Popov, L. Mashev, D. Maystre, “Theoretical study of anomalies of coated dielectric gratings,” Opt. Acta (Lond.) 33, 607–619 (1986).
  7. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985). [CrossRef]
  8. I. A. Avrutsky, V. A. Sychugov, “Reflection of a beam of finite size from a corrugated waveguide,” J. Mod. Opt. 36(11), 1527–1539 (1989). [CrossRef]
  9. R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992). [CrossRef]
  10. S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993). [CrossRef] [PubMed]
  11. Y. Ding, R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004). [CrossRef] [PubMed]
  12. Y. Ding, R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express 12(9), 1885–1891 (2004). [CrossRef] [PubMed]
  13. M. Shokooh-Saremi, R. Magnusson, “Wideband leaky-mode resonance reflectors: influence of grating profile and sublayers,” Opt. Express 16(22), 18249–18263 (2008). [CrossRef] [PubMed]
  14. G. Lenz, B. J. Eggleton, C. K. Madsen, R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37(4), 525–532 (2001). [CrossRef]
  15. C. K. Madsen, G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett. 10(7), 994–996 (1998). [CrossRef]
  16. G. Lenz, C. K. Madsen, “General optical all-pass filter structures for dispersion control,” J. Lightwave Technol. 17(7), 1248–1254 (1999). [CrossRef]
  17. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11(12), 1623–1625 (1999). [CrossRef]
  18. M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. Le Grange, S. S. Patel, “Integrated resonance-enhanced variable optical delay lines,” IEEE Photon. Technol. Lett. 17(4), 834–836 (2005). [CrossRef]
  19. E. Parra and J. R. Lowell, “Toward applications of slow light technology,” Opt. Photon. News, 40–45 (Nov. 2007).
  20. M. Notomi, E. Kuramochi, T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008). [CrossRef]
  21. F. Xia, L. Sekaric, Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  22. F. Schreier, M. Schmitz, O. Bryngdahl, “Pulse delay at diffractive structures under resonance conditions,” Opt. Lett. 23(17), 1337–1339 (1998). [CrossRef] [PubMed]
  23. M. S. Mirotznik, D. W. Prather, J. N. Mait, W. A. Beck, S. Shi, X. Gao, “Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method,” Appl. Opt. 39(17), 2871–2879 (2000). [CrossRef]
  24. S. Tibuleac, R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14(7), 1617–1626 (1997). [CrossRef]
  25. W. Suh, S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905–4907 (2004). [CrossRef]
  26. W. Nakagawa, R. Tyan, P. Sun, F. Xu, Y. Fainman, “Ultrashort pulse propagation in near-field periodic diffractive structures by use of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 18(5), 1072–1081 (2001). [CrossRef]
  27. T. Vallius, P. Vahimaa, J. Turunen, “Pulse deformations at guided-mode resonance filters,” Opt. Express 10(16), 840–843 (2002). [PubMed]
  28. T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73(5), 894–937 (1985). [CrossRef]
  29. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995). [CrossRef]
  30. R. Eberhart, and J. Kennedy, “Particle swarm optimization,” in Proceedings of IEEE Conference on Neural Networks (IEEE, 1995) 1942–1948.
  31. M. Shokooh-Saremi, R. Magnusson, “Particle swarm optimization and its application to the design of diffraction grating filters,” Opt. Lett. 32(8), 894–896 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited