OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 1 — Jan. 4, 2010
  • pp: 212–217

Azimuthally and radially polarized light with a nematic SLM

Mark Bashkansky, Doewon Park, and Fredrik K. Fatemi  »View Author Affiliations


Optics Express, Vol. 18, Issue 1, pp. 212-217 (2010)
http://dx.doi.org/10.1364/OE.18.000212


View Full Text Article

Enhanced HTML    Acrobat PDF (963 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a technique for generating azimuthally and radially polarized beams using a nematic liquid crystal spatial light modulator and a π phase step. The technique is similar in concept to prior techniques that interfere TEM01 and TEM10 laser modes, but the presented technique removes the requirement of interferometric stability. We calculate an overlap integral of >0.96 with >70% efficiency from an input Gaussian mode. The technique can easily switch between beams with azimuthal and radial polarization.

© 2009 OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices
(230.5440) Optical devices : Polarization-selective devices
(230.6120) Optical devices : Spatial light modulators
(260.3160) Physical optics : Interference
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: October 23, 2009
Revised Manuscript: December 2, 2009
Manuscript Accepted: December 9, 2009
Published: December 23, 2009

Citation
Mark Bashkansky, Doewon Park, and Fredrik K. Fatemi, "Azimuthally and radially polarized light with a nematic SLM," Opt. Express 18, 212-217 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-1-212


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959). [CrossRef]
  2. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959). [CrossRef]
  3. D. P. Biss and T. G. Brown, “Cylindrical vector beam focusing through a dielectric interface,” Opt. Express 9(10), 490–497 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-10-490 . [CrossRef] [PubMed]
  4. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light-theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
  5. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-7-324 . [PubMed]
  6. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-2-77 . [CrossRef] [PubMed]
  7. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997). [CrossRef]
  8. K. T. Gahagan and G. A. Swartzlander., “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16(4), 533–537 (1999). [CrossRef]
  9. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999). [CrossRef]
  10. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D 33(15), 1817–1822 (2000). [CrossRef]
  11. B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85(21), 4482–4485 (2000). [CrossRef] [PubMed]
  12. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001). [CrossRef] [PubMed]
  13. J. Azoulay, A. Debarre, R. Jaffiol, and P. Tchenio, “Original tools for single-molecule spectroscopy,” Single Mol. 2(4), 241–249 (2001). [CrossRef]
  14. F. Treussart, R. Alléaume, V. Le Floc’h, L. T. Xiao, J. M. Courty, and J. F. Roch, “Direct measurement of the photon statistics of a triggered single photon source,” Phys. Rev. Lett. 89(9), 093601 (2002). [CrossRef] [PubMed]
  15. C. Varin and M. Piché, “Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams,” Appl. Phys. B 74, S83–S88 (2002). [CrossRef]
  16. K. S. Youngworth and T. G. Brown, “Inhomogeneous polarization in scanning optical microscopy,” Proc. SPIE 3919, 75–85 (2000). [CrossRef]
  17. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H. P. Herzig, “Optical properties of microfabricated fully-metal coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22(7), 1432–1441 (2005). [CrossRef]
  18. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  19. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996). [CrossRef] [PubMed]
  20. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009). [CrossRef] [PubMed]
  21. T. Grosjean, D. Courjon, and M. Spajer, “An all-fiber device for generating radially and other polarized light beams,” Opt. Commun. 203(1-2), 1–5 (2002). [CrossRef]
  22. U. D. Zeitner, B. Schnabel, E. B. Kley, and F. Wyrowski, “Polarization multiplexing of diffractive elements with metal-stripe grating pixels,” Appl. Opt. 38(11), 2177–2181 (1999). [CrossRef] [PubMed]
  23. Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using spacevariant subwavelength metal strip grating,” Appl. Phys. Lett. 79(11), 1587–1589 (2001). [CrossRef]
  24. G. M. Lerman and U. Levy, “Space-variant subwavelength periodic element at a wavelength of 1064 nm,” Opt. Lett. 33, 22782–22784 (2008).
  25. M. A. A. Neil, F. Massoumian, R. Juškaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett. 27(21), 1929–1931 (2002). [CrossRef] [PubMed]
  26. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14(7), 2650–2656 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2650 . [CrossRef] [PubMed]
  27. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39(10), 1549–1554 (2000). [CrossRef] [PubMed]
  28. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29(15), 2234–2239 (1990). [CrossRef] [PubMed]
  29. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22(5), 984–991 (2005). [CrossRef]
  30. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited