OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 1 — Jan. 4, 2010
  • pp: 259–266

Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films

Matthew Weidman, Matthieu Baudelet, Santiago Palanco, Michael Sigman, Paul J. Dagdigian, and Martin Richardson  »View Author Affiliations


Optics Express, Vol. 18, Issue 1, pp. 259-266 (2010)
http://dx.doi.org/10.1364/OE.18.000259


View Full Text Article

Enhanced HTML    Acrobat PDF (489 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced breakdown spectroscopy (LIBS) using double-pulse irradiation with Nd:YAG and CO2 lasers was applied to the analysis of a polystyrene film on a silicon substrate. An enhanced emission signal, compared to single-pulse LIBS using a Nd:YAG laser, was observed from atomic carbon, as well as enhanced molecular emission from C2 and CN. This double-pulse technique was further applied to 2,4,6-trinitrotoluene residues, and enhanced LIBS signals for both atomic carbon and molecular CN emission were observed; however, no molecular C2 emission was detected.

© 2009 OSA

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(160.4890) Materials : Organic materials
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Spectroscopy

History
Original Manuscript: November 4, 2009
Revised Manuscript: November 30, 2009
Manuscript Accepted: December 15, 2009
Published: December 23, 2009

Citation
Matthew Weidman, Matthieu Baudelet, Santiago Palanco, Michael Sigman, Paul J. Dagdigian, and Martin Richardson, "Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films," Opt. Express 18, 259-266 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-1-259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003). [CrossRef] [PubMed]
  2. F. C. DeLucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection,” IEEE Sens. J. 5(4), 681–689 (2005). [CrossRef]
  3. C. A. Munson, F. C. De Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta, B At. Spectrosc. 60(7-8), 1217–1224 (2005). [CrossRef]
  4. W. Schade, C. Bohling, K. Hohmann, and D. Scheel, “Laser-induced plasma spectroscopy for mine detection and verification,” Laser and Particle Beams 24(02), 241–247 (2006). [CrossRef]
  5. S. Singh, “Sensors--An effective approach for the detection of explosives,” J. Hazard. Mater. 144(1-2), 15–28 (2007). [CrossRef] [PubMed]
  6. Y. Dikmelik, C. McEnnis, and J. B. Spicer, “Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene,” Opt. Express 16(8), 5332–5337 (2008). [CrossRef] [PubMed]
  7. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 62(4), 353–363 (2008). [CrossRef] [PubMed]
  8. C. McEnnis, and J. B. Spicer, “Substrate-related effects on molecular and atomic emission in LIBS of explosives,” (2008), p. 695309.
  9. L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation, 1987-1994,” Microchem. J. 50(3), 218–234 (1994). [CrossRef]
  10. L. J. Radziemski, and D. A. Cremers, Laser-induced plasmas and applications (CRC Press, 1989).
  11. D. A. Cremers, and L. J. Radziemski, Handbook of laser-induced breakdown spectroscopy (John Wiley, 2006).
  12. B. C. Castle, K. Talabardon, B. W. Smith, and J. D. Winefordner, “Variables influencing the precision of laser-induced breakdown spectroscopy measurements,” Appl. Spectrosc. 52(5), 649–657 (1998). [CrossRef]
  13. J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78(1), 24–32 (2006). [CrossRef] [PubMed]
  14. E. H. Piepmeier and H. V. Malmstadt, “Q-switched laser energy absorption in the plume of an aluminum alloy,” Anal. Chem. 41(6), 700–707 (1969). [CrossRef]
  15. D. N. Stratis, K. L. Eland, and S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54(9), 1270–1274 (2000). [CrossRef]
  16. D. N. Stratis, K. L. Eland, and S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55(10), 1297–1303 (2001). [CrossRef]
  17. F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta, B At. Spectrosc. 57(7), 1167–1179 (2002). [CrossRef]
  18. L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta, B At. Spectrosc. 57(1), 121–135 (2002). [CrossRef]
  19. A. Kuwako, Y. Uchida, and K. Maeda, “Supersensitive detection of sodium in water with use of dual-pulse laser-induced breakdown spectroscopy,” Appl. Opt. 42(30), 6052–6056 (2003). [CrossRef] [PubMed]
  20. J. Scaffidi, W. Pearman, M. Lawrence, J. C. Carter, B. W. Colston, and S. M. Angel, “Spatial and temporal dependence of interspark interactions in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy,” Appl. Opt. 43(27), 5243–5250 (2004). [CrossRef] [PubMed]
  21. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Characterization of a collinear double pulse laser-induced plasma at several ambient gas pressures by spectrally-and time-resolved imaging,” Appl. Phys. B 80(4-5), 559–568 (2005). [CrossRef]
  22. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO(2) laser pulse,” Opt. Express 15(20), 12905–12915 (2007). [CrossRef] [PubMed]
  23. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, and E. L. Dottery, “LIBS plasma enhancement for standoff detection applications,” Proceedings of SPIE, the International Society for Optical Engineering (2008), pp. 695403–695403.
  24. A. Pal, R. D. Waterbury, E. L. Dottery, and D. K. Killinger, “Enhanced temperature and emission from a standoff 266 nm laser initiated LIBS plasma using a simultaneous 10.6 µm CO2 laser pulse,” Opt. Express 17(11), 8856–8870 (2009). [CrossRef] [PubMed]
  25. G. Galbács, V. Budavári, and Z. Geretovszky, “Multi-pulse laser-induced plasma spectroscopy using a single laser source and a compact spectrometer,” J. Anal. At. Spectrom. 20(9), 974–980 (2005). [CrossRef]
  26. C. Gautier, P. Fichet, D. Menut, J. L. Lacour, D. L'Hermite, and J. Dubessy, “Study of the double-pulse setup with an orthogonal beam geometry for laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 59(7), 975–986 (2004). [CrossRef]
  27. P. Mora, “Theoretical model of absorption of laser light by a plasma,” Phys. Fluids 25(6), 1051 (1982). [CrossRef]
  28. Y. B. Zel'Dovich, Physics of shock waves and high-temperature hydrodynamic phenomena (Dover Publications, 2002).
  29. L. St-Onge, R. Sing, S. Bechard, and M. Sabsabi, “Carbon emissions following 1.064 µm laser ablation of graphite and organic samples in ambient air,” Appl. Phys., A Mater. Sci. Process. 69, 913–916 (1999).
  30. M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochimica Acta Part B: Atomic Spectroscopy (2007).
  31. M. Weidman, “Thermodynamic and spectroscopic properties of Nd:YAG-CO2 Double-Pulse Laser-Induced Iron Plasma,” Spectrochimica Acta Part B: Atomic Spectroscopy (2009).
  32. A. Khachatrian and P. J. Dagdigian, “Laser-induced breakdown spectroscopy with laser irradiation on mid-infrared hydride stretch transitions: polystyrene,” Appl. Phys. B 97(1), 243–248 (2009). [CrossRef]
  33. S. S. Harilal, R. C. Issac, C. V. Bindhu, P. Gopinath, V. P. N. Nampoori, and C. P. G. Vallabhan, “Time resolved study of CN band emission from plasma generated by laser irradiation of graphite,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 53(10), 1527–1536 (1997). [CrossRef]
  34. C. Vivien, J. Hermann, A. Pertone, C. Boulmer-Leborgne, and A. Luches, “A study of molecule formation during laser ablation of graphite in low-pressure nitrogen,” J. Phys. D Appl. Phys. 31(10), 1263–1272 (1998). [CrossRef]
  35. A. A. Voevodin, J. G. Jones, J. S. Zabinski, and L. Hultman, “Plasma characterization during laser ablation of graphite in nitrogen for the growth of fullerene-like CNx films,” J. Appl. Phys. 92(2), 724 (2002). [CrossRef]
  36. A. Portnov, S. Rosenwaks, and I. Bar, “Emission following laser-induced breakdown spectroscopy of organic compounds in ambient air,” Appl. Opt. 42(15), 2835–2842 (2003). [CrossRef] [PubMed]
  37. J. E. Mentall and R. W. Nicholls, “Absolute band strengths for the C2 Swan system,” Proc. Phys. Soc. 86(4), 873–876 (1965). [CrossRef]
  38. L. L. Danylewych, and R. W. Nicholls, “Intensity Measurements and Transition Probabilities for Bands of the CN Violet (B2Σ+ - X2Σ+) Band System,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 557–573 (1978).
  39. R. Cohen, Y. Zeiri, E. Wurzberg, and R. Kosloff, “Mechanism of thermal unimolecular decomposition of TNT (2,4,6-trinitrotoluene): a DFT study,” J. Phys. Chem. A 111(43), 11074–11083 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited