OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 1 — Jan. 4, 2010
  • pp: 301–308

Multi-point differential laser doppler velocimeter using arrayed waveguide gratings with small wavelength sensitivity

Koichi Maru, Kohjiro Kobayashi, and Yusaku Fujii  »View Author Affiliations

Optics Express, Vol. 18, Issue 1, pp. 301-308 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1068 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A multi-point laser Doppler velocimeter (LDV) using the arrayed waveguide gratings (AWGs) with small wavelength sensitivity (less than 1/10 of that for a conventional LDV without the AWGs) is proposed, in which velocities at different points in the depth direction can be simultaneously measured with compact optical systems. The design and characteristics of the proposed LDV are investigated with the model using the grating equation of the AWGs. From our simulation results, the wavelength sensitivity for multiple measured points can be reduced to less than 1/10 of that for a conventional LDV without an AWG.

© 2009 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(130.0130) Integrated optics : Integrated optics
(230.7390) Optical devices : Waveguides, planar
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(080.1238) Geometric optics : Array waveguide devices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 23, 2009
Revised Manuscript: December 18, 2009
Manuscript Accepted: December 18, 2009
Published: December 23, 2009

Koichi Maru, Kohjiro Kobayashi, and Yusaku Fujii, "Multi-point differential laser doppler velocimeter using arrayed waveguide gratings with small wavelength sensitivity," Opt. Express 18, 301-308 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Hachiga, N. Furuichi, J. Mimatsu, K. Hishida, and M. Kumada, “Development of a multi-point LDV by using semiconductor laser with FFT-based multi-channel signal processing,” Exp. Fluids 24(1), 70–76 (1998). [CrossRef]
  2. E. B. Li, J. Xi, J. F. Chicharo, J. Q. Yao, and D. Y. Yu, “Multi-point laser Doppler velocimeter,” Opt. Commun. 245(1-6), 309–313 (2005). [CrossRef]
  3. H.-E. Albrecht, M. Borys, N. Damaschke, and C. Tropea, Laser Doppler and Phase Doppler Measurement Techniques (Springer – Verlag Berlin Heidelberg, 2003), Chap. 7.
  4. M. Haruna, K. Kasazumi, and H. Nishihara, “Integrated-optic differential laser Doppler velocimeter with a micro Fresnel lens array,” in Proceedings of Conf. Integ. & Guided-Wave Opt. (IGWO ’89), MBB6.
  5. T. Ito, R. Sawada, and E. Higurashi, “Integrated microlaser Doppler velocimeter,” J. Lightwave Technol. 17(1), 30–34 (1999). [CrossRef]
  6. K. Maru and Y. Fujii, “Integrated wavelength-insensitive differential laser Doppler velocimeter using planar lightwave circuit,” J. Lightwave Technol. 27(22), 5078–5083 (2009). [CrossRef]
  7. J. Schmidt, R. Völkel, W. Stork, J. T. Sheridan, J. Schwider, N. Streibl, and F. Durst, “Diffractive beam splitter for laser Doppler velocimetry,” Opt. Lett. 17(17), 1240–1242 (1992). [CrossRef] [PubMed]
  8. R. Sawada, K. Hane, and E. Higurashi, Optical micro electro mechanical systems (Ohmsha, Tokyo, 2002), Section 5.2. (in Japanese)
  9. K. Maru and Y. Fujii, “Wavelength-insensitive laser Doppler velocimeter using beam position shift induced by Mach-Zehnder interferometers,” Opt. Express 17(20), 17441–17449 (2009). [CrossRef] [PubMed]
  10. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22(5), 391–416 (1990). [CrossRef]
  11. H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12(6), 989–995 (1994). [CrossRef]
  12. Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexer with higher index-contrast silica-based PLCs,” J. Sel. Top. Quantum Electron. 8(6), 1090–1101 (2002). [CrossRef]
  13. H. Uetsuka, “AWG technologies for dense WDM applications,” J. Sel. Top. Quantum Electron. 10(2), 393–402 (2004). [CrossRef]
  14. K. Maru, Y. Abe, M. Ito, H. Ishikawa, S. Himi, H. Uetsuka, and T. Mizumoto, “2.5%-Δ silica-based athermal arrayed waveguide grating employing spot-size converters based on segmented core,” IEEE Photon. Technol. Lett. 17(11), 2325–2327 (2005). [CrossRef]
  15. C. R. Doerr and K. Okamoto, “Advances in silica planar lightwave circuits,” J. Lightwave Technol. 24(12), 4763–4789 (2006). [CrossRef]
  16. K. Maru, T. Mizumoto, and H. Uetsuka, “Modeling of multi-input arrayed waveguide grating and its application to design of flat-passband response using cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25(2), 544–555 (2007). [CrossRef]
  17. K. Maru, T. Mizumoto, and H. Uetsuka, “Demonstration of flat-passband multi/demultiplexer using multi-input arrayed waveguide grating combined with cascaded Mach-Zehnder interferometers,” J. Lightwave Technol. 25(8), 2187–2197 (2007). [CrossRef]
  18. J. W. Goodman, Introduction to Fourier optics (McGraw-Hill, San Francisco, 1968), Chap. 4–5.
  19. C. R. Doerr, M. Cappuzzo, E. Laskowski, A. Paunescu, L. Gomez, L. W. Stulz, and J. Gates, “Dynamic wavelength equalizer in silica using the single-filtered-arm interferometer,” IEEE Photon. Technol. Lett. 11(5), 581–583 (1999). [CrossRef]
  20. I. Kaminow, and T. Li, Optical Fiber Telecommunications IVA (Academic Press, San Diego, 2002), pp. 424–427.
  21. M. K. Smit and C. van Dam, “PHASAR-based WDM-devices: principles, design and applications,” J. Sel. Top. Quantum Electron. 2(2), 236–250 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited