OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 1 — Jan. 4, 2010
  • pp: 323–332

Efficient excitation of the TE01 hollow metal waveguide mode for atom guiding

Fredrik K. Fatemi, Mark Bashkansky, Eunkeu Oh, and Doewon Park  »View Author Affiliations

Optics Express, Vol. 18, Issue 1, pp. 323-332 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1647 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate excitation of the azimuthally-polarized TE01 cylindrical waveguide mode in hollow glass and metal waveguides with 780 nm light. Experimentally, we demonstrate formation of the vectorial vortex beams, and measure attenuation lengths of the TE01 mode in hollow optical fibers with diameters of 50–100 microns. By silver-coating the inner walls of the dielectric fibers, we demonstrate a ≈ 200% increase in the attenuation length.

© 2010 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(060.2310) Fiber optics and optical communications : Fiber optics
(140.3300) Lasers and laser optics : Laser beam shaping
(230.7370) Optical devices : Waveguides
(260.5430) Physical optics : Polarization

ToC Category:
Atomic and Molecular Physics

Original Manuscript: October 29, 2009
Revised Manuscript: December 4, 2009
Manuscript Accepted: December 8, 2009
Published: December 23, 2009

Fredrik K. Fatemi, Mark Bashkansky, Eunkeu Oh, and Doewon Park, "Efficient excitation of the TE01 hollow metal waveguide mode for atom guiding," Opt. Express 18, 323-332 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Dholakia, "Atom Hosepipes," Contemporary Phys. 39, 351-369 (1998). [CrossRef]
  2. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, "Efficient All-Optical Switching Using Slow Light within a Hollow Fiber," Phys. Rev. Lett. 102, 203902 (2009). [CrossRef] [PubMed]
  3. T. L. Gustavson, A. Landragin, and M. A. Kasevich, "Rotation sensing with a dual atom-interferometer Sagnac gyroscope" Class. Quantum. Grav. 17, 2385-2398 (2000). [CrossRef]
  4. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, "Laser-Guided Atoms in Hollow-Core Optical Fibers," Phys. Rev. Lett. 75(18), 3253-3256 (1995). [CrossRef] [PubMed]
  5. M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, "Evanescent-wave guiding of atoms in hollow optical fibers," Phys. Rev. A 53(2), 648-651 (1996). [CrossRef] [PubMed]
  6. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, "Laser Spectroscopy of Atoms Guided by Evanescent Waves in Micron-Sized Hollow Optical Fibers," Phys. Rev. Lett. 76(24), 4500-4503 (1996). [CrossRef] [PubMed]
  7. D. M¨uller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, "Guiding laser-cooled atoms in hollow-core fibers," Phys. Rev. A 61(3), 033411 (2000). [CrossRef]
  8. F. K. Fatemi, M. Bashkansky, and S. Moore, "Side-illuminated hollow-core optical fiber for atom guiding," Opt. Express 13(13), 4890-4895 (2005). [CrossRef] [PubMed]
  9. H. S. Pilloff, "Enhanced atom guiding in metal-coated, hollow-core optical fibers," Opt. Commun. 143(1-3), 25- 29 (1997). [CrossRef]
  10. T. Takekoshi and R. J. Knize, "Optical Guiding of Atoms through a Hollow-Core Photonic Band-Gap Fiber," Phys. Rev. Lett. 98(21), 210404 (2007), http://link.aps.org/abstract/PRL/v98/e210404. [CrossRef] [PubMed]
  11. Z. Wang, M. Dai, and J. Yin, "Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide," Opt. Express 13(21), 8406-8423 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-21-8406. [CrossRef] [PubMed]
  12. M. E. Marhic and E. Garmire, "Low-order TE[sub 0q] operation of a CO[sub 2] laser for transmission through circular metallic waveguides," Appl. Phys. Lett. 38(10), 743-745 (1981), http://link.aip.org/link/?APL/38/743/1. [CrossRef]
  13. Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, "Vectorial vortex mode transformation for a hollow waveguide using Pancharatnam-Berry phase optical elements," Opt. Lett. 31(22), 3252-3254 (2006), http://ol.osa.org/abstract.cfm?URI=ol-31-22-3252. [CrossRef] [PubMed]
  14. Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman, "Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures," Opt. Express 15(20), 13,404-13,414 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13404. [CrossRef]
  15. W. S. Mohammed, A. Mehta, M. Pitchumani, and E. G. Johnson, "Selective excitation of the TE01 mode in hollow-glass waveguide using a subwavelength grating," Photon. Technol. Lett 17(7), 1441-1443 (2005). [CrossRef]
  16. K.-R. Sui, Y.-W. Shi, X.-L. Tang, X.-S. Zhu, K. Iwai, and M. Miyagi, "Optical properties of AgI/Ag infrared hollow fiber in the visible wavelength region," Opt. Lett. 33(4), 318-320 (2008), http://ol.osa.org/abstract.cfm?URI=ol-33-4-318. [CrossRef] [PubMed]
  17. Y. Matsuura, T. Abel, and J. A. Harrington, "Optical properties of small-bore hollow glass waveguides," Appl. Opt. 34(30), 6842-6847 (1995), http://ao.osa.org/abstract.cfm?URI=ao-34-30-6842. [CrossRef] [PubMed]
  18. T. Abel, J. Hirsch, and J. A. Harrington, "Hollow glass waveguides for broadband infrared transmission," Opt. Lett. 19(14), 1034-1036 (1994), http://ol.osa.org/abstract.cfm?URI=ol-19-14-1034. [CrossRef] [PubMed]
  19. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature 420, 650-653 (2002). [CrossRef] [PubMed]
  20. M. Mohebbi, R. Fedosejevs, V. Gopal, and J. A. Harrington, "Silver-coated hollow-glass waveguide for applications at 800 nm," Appl. Opt. 41(33), 7031-7035 (2002), http://ao.osa.org/abstract.cfm?URI=ao-41-33-7031. [CrossRef] [PubMed]
  21. E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).
  22. N. Friedman, A. Kaplan, and N. Davidson, "Dark optical traps for cold atoms," Adv. Atom. Mol. Opt. Phys. 48, 99 (2002). [CrossRef]
  23. R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, "Optical dipole traps for neutral atoms," Adv. Atom. Mol. Opt. Phys. 42, 95 (2000). [CrossRef]
  24. M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, "Faraday spectroscopy of atoms confined in a dark optical trap," Phys. Rev. A 77(6), 063417 (2008). http://link.aps.org/abstract/PRA/v77/e063417. [CrossRef]
  25. M. Bashkansky, D. Park, and F. K. Fatemi, "Azimuthally and radially polarized light with a nematic SLM," Opt. Express 18(1), 212-217 (2010). [CrossRef]
  26. R. Bicknell, L. King, C. E. Otis, J.-S. Yeo, N. Meyer, P. Kornilovitch, S. Lerner, and L. Seals, "Fabrication and characterization of hollow metal waveguides for optical interconnect applications," Appl. Phys. A 95, 1059-1066 (2009). [CrossRef]
  27. O. Seitz, M.M. Chehimi, E. Cabt-Deliry, S. Truong, N. Felidj, C. Perruchot, S. J. Greaves, and J. F. Watts, "Preparation and characterisation of gold nanoparticle assemblies on silanised glass plates," Colloids and Surfaces A: Physicochem. Eng. Aspects 218, 225-239 (2003). [CrossRef]
  28. K. Susumu, H. T. Uyeda, I. L. Medintz, T. Pons, J. B. Delehanty, and H. Mattoussi, "Enhancing the stability and biological Functionalities of quantum dots via compact multifunctional ligands," J. Am. Chem. Soc. 129, 13987-13996 (2007). [CrossRef] [PubMed]
  29. Z. J. Wang, S. L. Pan, T. D. Krauss, H. Du, and L. J. Rothberg, "The structural basis for giant enhancement enabling single-molecule Raman scattering," Proc. Natl. Acad. Sci. USA 100, 8638-8643 (2003). [CrossRef] [PubMed]
  30. S. E. Olson, M. L. Terraciano, M. Bashkansky, and F. K. Fatemi, "Cold-atom confinement in an all-optical dark ring trap," Phys. Rev. A 76(6), 061404 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited