OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 1 — Jan. 4, 2010
  • pp: 348–363

Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap

Ivan Avrutsky, Richard Soref, and Walter Buchwald  »View Author Affiliations

Optics Express, Vol. 18, Issue 1, pp. 348-363 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study guided modes in a conductor-gap-dielectric (CGD) system that includes a low-index dielectric gap layer of deep sub-wavelength thickness sandwiched between a conductor and a high-index dielectric cladding. Analysis of the dispersion equation for CGD modes provides an analytical estimation for the cut-off thickness of the gap layer. This guided mode is unusual because it exists when the gap thickness is less than the cutoff thickness. In the direction normal to the interfaces, the modal electric field is tightly confined within the gap. Sub-wavelength lateral mode confinement is readily provided by a spatial variation of the gap-layer thickness: the modal field localizes at the narrowest gap. Various lateral confinement schemes are proposed and verified by numerical simulations. Possible applications of CGD modes include surface-plasmon nano-lasers (SPASERs) and sensors. If these plasmonic waveguides are scaled for operation at far infrared rather than telecomm wavelengths, then the propagation losses are dramatically reduced, thereby enabling the construction of practical chip-scale plasmonic integrated circuits or PLICs.

© 2009 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Integrated Optics

Original Manuscript: October 28, 2009
Revised Manuscript: December 1, 2009
Manuscript Accepted: December 14, 2009
Published: December 24, 2009

Ivan Avrutsky, Richard Soref, and Walter Buchwald, "Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap," Opt. Express 18, 348-363 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006). [CrossRef] [PubMed]
  2. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004). [CrossRef]
  3. C. A. Barrios and M. Lipson, “Electrically driven silicon resonant light emitting device based on slot-waveguide,” Opt. Express 13(25), 10092–10101 (2005). [CrossRef] [PubMed]
  4. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett. 86(8), 081101 (2005). [CrossRef]
  5. P. Müllner and R. Hainberger, “Structural optimization of silicon-on-insulator slot waveguides,” IEEE Photon. Technol. Lett. 18(24), 2557–2559 (2006). [CrossRef]
  6. P. Sanchis, J. Blasco, A. Martínez, and J. Marti, “Design of silicon-based slot waveguide configurations for optimum nonlinear performance,” J. Lightwave Technol. 25(5), 1298–1305 (2007). [CrossRef]
  7. N.-N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43(6), 479–485 (2007). [CrossRef]
  8. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Pev. B 74, 205419 (2006).
  9. R. Gordon, A. I. K. Choudhury, and T. Lu, “Gap plasmon mode of eccentric coaxial metal waveguide,” Opt. Express 17(7), 5311–5320 (2009). [CrossRef] [PubMed]
  10. V. M. Agranovich, and D. L. Mills, Surface Polaritons: ElectromagneticWaves at Surfaces and Interfaces (Elsevier, New York, 1982).
  11. Electromagnetic Surface Modes, edited by A. D. Boardman (Wiley, New York, 1982).
  12. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  13. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981). [CrossRef]
  14. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005). [CrossRef]
  15. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005). [CrossRef] [PubMed]
  16. T. Laroche and C. Girard, “Near-field optical properties of single plasmonic nanowires,” Appl. Phys. Lett. 89(23), 233119 (2006). [CrossRef]
  17. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14(1), 314–319 (2006). [CrossRef] [PubMed]
  18. D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85(26), 6323–6325 (2004). [CrossRef]
  19. E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling,” Appl. Phys. Lett. 92(8), 083110 (2008). [CrossRef]
  20. I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94(5), 057401 (2005). [CrossRef] [PubMed]
  21. I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70(15), 155416 (2004). [CrossRef]
  22. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003). [CrossRef]
  23. I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75(24), 241402 (2007). [CrossRef]
  24. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” N. J. Phys. 10(10), 105018 (2008). [CrossRef]
  25. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  26. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  27. Material parameters are extrapolated using data from http://refractiverndex.info.
  28. J. Liu, X. Sun, L. C. Kimerling, and J. Michel, “A Ge-on-Si Laser,” paper FD2, IEEE 6th International Conference on Group IV Photonics, San Francisco, CA, September 11, 2009.
  29. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003). [CrossRef] [PubMed]
  30. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008). [CrossRef]
  31. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  32. R. A. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16(9), 6507–6514 (2008). [CrossRef] [PubMed]
  33. J. W. Cleary, R. E. Peale, D. Shelton, G. Boreman, R. Soref, and W. R. Buchwald, “Drude parameters of silicides and doped silicon for infrared plasmonics,” submitted to J. Opt. Soc. Am. B (3 Oct 2009).
  34. R. A. Soref, S. Y. Cho, W. R. Buchwald, R. E. Peale, and J. W. Cleary, “Silicon plasmonic waveguides”, chapter in An Introduction to Silicon Photonics, S. Fathpour and B. Jalali, Editors, Taylor and Francis UK (2010).
  35. R. A. Soref, S. Y. Cho, W. R. Buchwald and R. E. Peale, “Silicon plasmonic waveguides for infrared and Terahertz applications”, (invited) SPIE Photonics North, session on waveguide design and simulation, Quebec City, Canada 25 May 2009.
  36. S.-Y. Cho and R. A. Soref, “Low-loss silicide/silicon plasmonic ribbon waveguides for mid- and far-infrared applications,” Opt. Lett. 34(12), 1759–1761 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited