OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 1 — Jan. 4, 2010
  • pp: 386–392

Light propagation in three-dimensional photonic crystals

Shoichi Kawashima, Kenji Ishizaki, and Susumu Noda  »View Author Affiliations


Optics Express, Vol. 18, Issue 1, pp. 386-392 (2010)
http://dx.doi.org/10.1364/OE.18.000386


View Full Text Article

Enhanced HTML    Acrobat PDF (579 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the operation of two types of waveguides formed in three-dimensional (3D) photonic crystals (PCs). We first created a vertical waveguide by stacking acceptor-type defects, in which near-infrared light propagates in the stacking direction. Light is transmitted independent of polarization in this waveguide because electromagnetic waves couple to a degenerate mode derived from the structural symmetry of the defects. We then connected horizontal and vertical waveguides to form an L-shaped waveguide, which is able to guide near-infrared light from the horizontal to vertical direction in the 3D PC. We envisage the realization of more complex 3D optical interconnections by optimizing the waveguide structures and increasing the PC period in the vertical direction.

© 2009 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(130.5296) Integrated optics : Photonic crystal waveguides
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: November 9, 2009
Revised Manuscript: November 30, 2009
Manuscript Accepted: November 30, 2009
Published: December 24, 2009

Virtual Issues
January 8, 2010 Spotlight on Optics

Citation
Shoichi Kawashima, Kenji Ishizaki, and Susumu Noda, "Light propagation in three-dimensional photonic crystals," Opt. Express 18, 386-392 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-1-386


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289(5479), 604–606 (2000). [CrossRef] [PubMed]
  2. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004), doi:. [CrossRef] [PubMed]
  3. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004). [CrossRef] [PubMed]
  4. M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88(17), 171107 (2006). [CrossRef]
  5. S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2(1), 52–56 (2008). [CrossRef]
  6. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics 2(11), 688–692 (2008). [CrossRef]
  7. K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460(7253), 367–370 (2009). [CrossRef] [PubMed]
  8. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nature. Materials 8, 721–725 (2009); advance online publication, 9 August 2009 (DOI ). [CrossRef] [PubMed]
  9. A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75(24), 3739–3741 (1999). [CrossRef]
  10. M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides,” Phys. Rev. B 63(8), 081107 (2001). [CrossRef]
  11. M. Okano, A. Chutinan, and S. Noda, “Analysis and design of single-defect cavities in a three-dimensional photonic crystal,” Phys. Rev. B 66(16), 165211 (2002). [CrossRef]
  12. Z. Y. Li and K. M. Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” J. Opt. Soc. Am. B 20(5), 801–809 (2003). [CrossRef]
  13. C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, “Waveguide networks in three-dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84(23), 4605–4607 (2004). [CrossRef]
  14. D. Roundy, E. Lidorikis, and J. D. Joannopoulos, “Polarization-selective waveguide bends in a photonic crystal structure with layered square symmetry,” J. Appl. Phys. 96(12), 7750–7752 (2004). [CrossRef]
  15. A. Chutinan and S. John, “Light localization for broadband integrated optics in three dimensions,” Phys. Rev. B 72(16), 161316 (2005). [CrossRef]
  16. S. Kawashima, L. H. Lee, M. Okano, M. Imada, and S. Noda, “Design of donor-type line-defect waveguides in three-dimensional photonic crystals,” Opt. Express 13(24), 9774–9781 (2005). [CrossRef] [PubMed]
  17. S. Kawashima, M. Okano, M. Imada, and S. Noda, “Design of compound-defect waveguides in three-dimensional photonic crystals,” Opt. Express 14(13), 6303–6307 (2006). [CrossRef] [PubMed]
  18. S. Kawashima, M. Imada, K. Ishizaki, and S. Noda, “High-precision alignment and bonding system for the fabrication of 3-D nanostructures,” J. Microelectromech. Syst. 16(5), 1140–1144 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited