OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 1 — Jan. 4, 2010
  • pp: 63–71

Generation of radially and azimuthally polarized light by optical transmission through concentric circular nanoslits in Ag films

Feng Wang, Min Xiao, Kai Sun, and Qi-Huo Wei  »View Author Affiliations


Optics Express, Vol. 18, Issue 1, pp. 63-71 (2010)
http://dx.doi.org/10.1364/OE.18.000063


View Full Text Article

Enhanced HTML    Acrobat PDF (2114 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical transmission through concentric circular nanoslits is studied in experiments and numerical simulations. Polarized optical microscopic imaging shows that the optical transmission through these apertures is spatially inhomogeneous, exhibiting colored fan texture patterns. Numerical simulations show that these colored fan texture patterns originate from the cylindrical vector polarization of the transmitted beam. Specifically, the transmitted light is in-phase radially polarized at long wavelengths due to the predominant transmission of the transverse magnetic (TM) waveguide modes; and in-phase azimuthally polarized at short wavelengths due to the increased optical transmission of the transverse electric (TE) waveguide modes. Additionally, the transmission shows a peak at the wavelength of Wood anomaly and a dip at the resonant wavelength of surface plasmon excitation; and the transmitted light at these wavelengths is a mixture of azimuthally and radially polarized fields. These interesting optical transmission behaviors of circular nanoslits provide a miniaturized way to generating radially and azimuthally polarized light.

© 2009 OSA

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(230.5440) Optical devices : Polarization-selective devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 9, 2009
Manuscript Accepted: December 4, 2009
Published: December 22, 2009

Citation
Feng Wang, Min Xiao, Kai Sun, and Qi-Huo Wei, "Generation of radially and azimuthally polarized light by optical transmission through concentric circular nanoslits in Ag films," Opt. Express 18, 63-71 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-1-63


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  3. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002). [CrossRef] [PubMed]
  4. E. Moreno, F. J. García-Vidal, D. Erni, J. I. Cirac, and L. Martín-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92(23), 236801 (2004). [CrossRef] [PubMed]
  5. S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, and H. Zbinden, “Energy-time entanglement preservation in plasmon-assisted light transmission,” Phys. Rev. Lett. 94(11), 110501 (2005). [CrossRef] [PubMed]
  6. W. Srituravanich, S. Durant, H. Lee, C. Sun, and X. Zhang, “Deep subwavelength nanolithography using localized surface plasmon modes on planar silver mask,” J. Vac. Sci. Technol. B 23(6), 2636–2639 (2005). [CrossRef]
  7. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008). [CrossRef] [PubMed]
  8. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004). [CrossRef] [PubMed]
  9. F. Eftekhari, C. Escobedo, J. Ferreira, X. B. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009). [CrossRef] [PubMed]
  10. J. Ferreira, M. J. L. Santos, M. M. Rahman, A. G. Brolo, R. Gordon, D. Sinton, and E. M. Girotto, “Attomolar protein detection using in-hole surface plasmon resonance,” J. Am. Chem. Soc. 131(2), 436–437 (2009). [CrossRef] [PubMed]
  11. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001). [CrossRef] [PubMed]
  12. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002). [CrossRef] [PubMed]
  13. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004). [CrossRef] [PubMed]
  14. M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003). [CrossRef]
  15. J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003). [CrossRef]
  16. H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express 17(4), 2334–2340 (2009). [CrossRef] [PubMed]
  17. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004). [CrossRef] [PubMed]
  18. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005). [CrossRef] [PubMed]
  19. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999). [CrossRef]
  20. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001). [CrossRef] [PubMed]
  21. Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006). [CrossRef] [PubMed]
  22. K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005). [CrossRef] [PubMed]
  23. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007). [CrossRef] [PubMed]
  24. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005). [CrossRef]
  25. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002). [CrossRef]
  26. F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, “Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands,” Appl. Phys. B 79(1), 1–8 (2004). [CrossRef]
  27. W. J. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays,” Opt. Express 13(12), 4406–4413 (2005). [CrossRef] [PubMed]
  28. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005). [CrossRef] [PubMed]
  29. J. M. Steele, Z. W. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14(12), 5664–5670 (2006). [CrossRef] [PubMed]
  30. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1 (2009). [CrossRef]
  31. V. G. Niziev and A. V. Nesterov, “Laser Beams with Axially Symmetric Polarization,” J. Phys. D Appl. Phys. 32(13), 1455–1461 (1999). [CrossRef]
  32. M. Meier, V. Romano, and T. Feurer, “Material Processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007). [CrossRef]
  33. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  34. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  35. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44(24), 13556–13572 (1991). [CrossRef]
  36. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  37. N. Garcia and M. Nieto-Vesperinas, “Theory of electromagnetic wave transmission through metallic gratings of subwavelength slits,” J. Opt. A, Pure Appl. Opt. 9(5), 490–495 (2007). [CrossRef]
  38. B. Ung and Y. L. Sheng, “Interference of surface waves in a metallic nanoslit,” Opt. Express 15(3), 1182–1190 (2007). [CrossRef] [PubMed]
  39. R. W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48(12), 928–936 (1935). [CrossRef]
  40. P. B. Catrysse and S. H. Fan, “Understanding the Dispersion of Coaxial Plasmonic Structures through a Connection with the Planar Metal-Insulator-Metal Geometry,” Appl. Phys. Lett. 94(23), 231111 (2009). [CrossRef]
  41. C. P. Huang, Q. J. Wang, and Y. Y. Zhu, “Dual effect of surface plasmons in light transmission through perforated metal films,” Phys. Rev. B 75(24), 245421 (2007). [CrossRef]
  42. A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, “Resonant transmittance through metal films with fabricated and light-induced modulation,” Phys. Rev. B 67(19), 195402 (2003). [CrossRef]
  43. S. A. Darmanyan, M. Neviere, and A. V. Zayats, “Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes,” Phys. Rev. B 70(7), 075103 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited