OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10016–10028

Performance of serial time-encoded amplified microscope

Kevin K. Tsia, Keisuke Goda, Dale Capewell, and Bahram Jalali  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 10016-10028 (2010)
http://dx.doi.org/10.1364/OE.18.010016


View Full Text Article

Acrobat PDF (1209 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Serial time-encoded amplified microscopy (STEAM) is an entirely new imaging modality that enables ultrafast continuous real-time imaging with high sensitivity. By means of optical image amplification, STEAM overcomes the fundamental tradeoff between sensitivity and speed that affects virtually all optical imaging systems. Unlike the conventional microscope systems, the performance of STEAM depends not only on the lenses, but also on the properties of other components that are unique to STEAM, namely the spatial disperser, the group velocity dispersion element, and the back-end electronic digitizer. In this paper, we present an analysis that shows how these considerations affect the spatial resolution, and how they create a trade-off between the number of pixels and the frame rate of the STEAM imager. We also quantify how STEAM’s optical image amplification feature improves the imaging sensitivity. These analyses not only provide valuable insight into the operation of STEAM technology but also serve as a blue print for implementation and optimization of this new imaging technology.

© 2010 OSA

OCIS Codes
(170.0180) Medical optics and biotechnology : Microscopy
(180.0180) Microscopy : Microscopy

ToC Category:
Microscopy

History
Original Manuscript: March 4, 2010
Revised Manuscript: March 23, 2010
Manuscript Accepted: March 29, 2010
Published: April 28, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Kevin K. Tsia, Keisuke Goda, Dale Capewell, and Bahram Jalali, "Performance of serial time-encoded amplified microscope," Opt. Express 18, 10016-10028 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10016


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. B. Pawley, ed., Handbook of biological confocal microscopy, 3rd ed., Springer (2006).
  2. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009). [CrossRef]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef]
  4. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008). [CrossRef]
  5. H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83(2–3), 217–224 (2004). [CrossRef]
  6. H. R. Petty, “High speed microscopy,” Opt. Photonics News , 34–40 (2004).
  7. J. V. Watson, Introduction to flow cytometry, (Cambridge Univ. Press, Oxford, U. K. 2004).
  8. J. R. Janesick, Scientific Charge-Coupled Devices, (SPIE Publications, 2001).
  9. G. C. Holst, and T. S. Lomheim, CMOS/CCD Sensors and Camera Systems, SPIE-International Society for Optical Engine (2007).
  10. K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008). [CrossRef]
  11. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009). [CrossRef]
  12. J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007). [CrossRef]
  13. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008). [CrossRef]
  14. J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008). [CrossRef]
  15. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009). [CrossRef]
  16. G. J. Tearney, M. Shishkov, and B. E. Bouma, “Spectrally encoded miniature endoscopy,” Opt. Lett. 27(6), 412–414 (2002). [CrossRef]
  17. C. Pitris, B. Bouma, M. Shiskov, and G. Tearney, “A GRISM-based probe for spectrally encoded confocal microscopy,” Opt. Express 11(2), 120–124 (2003). [CrossRef]
  18. Z. Yaqoob and N. A. Riza, “Eye-safe passive-optics no-moving parts barcode scanners,” IEEE Photon. Technol. Lett. 16(3), 954–956 (2004). [CrossRef]
  19. S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually-imaged phased-array spectral dispersers based on paraxial-wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004). [CrossRef]
  20. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007). [CrossRef]
  21. S. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for >/= 1000 channels in the C-band,” Opt. Express 12(13), 2895–2902 (2004). [CrossRef]
  22. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34(14), 2099–2101 (2009). [CrossRef]
  23. Y. Han and B. Jalali, “Continuous-time time-stretched analog-to-digital converter array implemented using virtual time gating,” IEEE Trans. Circ. Syst. 52(8), 1502–1507 (2005). [CrossRef]
  24. G. P. Agrawal, Fiber Optic Communication Systems, 3rd Ed., Wiley-Interscience (2002).
  25. V. E. Perlin and H. G. Winful, “On Distributed Raman Amplification for Ultrabroad-Band Long-Haul WDM Systems,” J. Lightwave Technol. 20(3), 409–416 (2002). [CrossRef]
  26. M. T. Tilli, M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, and P. A. Furth, “Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy,” J. Biomed. Opt. 12(5), 051901 (2007). [CrossRef]
  27. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005). [CrossRef]
  28. J. V. Watson, Introduction to flow cytometry, Cambridge Univ. Press, Oxford, U. K. (2004).
  29. M. Fleisher, “Circulating tumor cells – a new opportunity for therapeutic management of cancer patients,” Clin. Lab. News 34, 10 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited