OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10055–10067

Brillouin spectroscopy of YAG-derived optical fibers

P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy  »View Author Affiliations

Optics Express, Vol. 18, Issue 10, pp. 10055-10067 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2527 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present Brillouin spectroscopy of YAG-derived optical fibers. It is found that the addition of yttria and alumina both tend to raise the acoustic velocity when added to silica, with the change due to yttria being much weaker. The temperature-dependence of the Stokes’s shift in the YAG-derived fibers is also measured, disclosing a lesser temperature dependence than conventional Ge-doped fibers. These fibers are found experimentally to have a substantially larger acoustic attenuation coefficient relative to that of bulk silica, and assuming a photoelastic constant of amorphous YAG similar to that of pure crystalline YAG, a much-reduced Brillouin gain coefficient as a result. A 40 weight percent yttria and alumina fiber has a Brillouin gain coefficient estimated to be roughly one sixth of pure silica. We also show that the addition of Er to the YAG-derived system decreases the acoustic velocity and broadens the Brillouin spectrum.

© 2010 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2290) Fiber optics and optical communications : Fiber materials
(160.2290) Materials : Fiber materials
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5890) Nonlinear optics : Scattering, stimulated

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 1, 2010
Revised Manuscript: April 23, 2010
Manuscript Accepted: April 26, 2010
Published: April 28, 2010

P. Dragic, P.-C. Law, J. Ballato, T. Hawkins, and P. Foy, "Brillouin spectroscopy of YAG-derived optical fibers," Opt. Express 18, 10055-10067 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009). [CrossRef]
  2. C.-C. Lai, K.-Y. Huang, H.-J. Tsai, K.-Y. Hsu, S.-K. Liu, C.-T. Cheng, K.-D. Ji, C.-P. Ke, S.-R. Lin, and S.-L. Huang, “Yb3+:YAG silica fiber laser,” Opt. Lett. 34(15), 2357–2359 (2009). [CrossRef] [PubMed]
  3. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972). [CrossRef] [PubMed]
  4. P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009). [CrossRef]
  5. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in CLEO/QELS2005, Vol. 3 of 2005 Conference on Lasers and Electro-Optics, Paper CThZ3.
  6. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007). [CrossRef] [PubMed]
  7. C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993). [CrossRef]
  8. N. H. Murray, N. K. Bourne, and Z. Rosenberg, “The dynamic compressive strength of aluminas,” J. Appl. Phys. 84(9), 4866–4871 (1998). [CrossRef]
  9. O. Yeheskel and O. Tevet, “Elastic moduli of transparent yttria,” J. Am. Ceram. Soc. 82, 136–144 (1999). [CrossRef]
  10. P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids 355(7), 403–413 (2009). [CrossRef]
  11. A. Yeniay, J.-M. Delavaux, and J. Toulouse, “Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers,” J. Lightwave Technol. 20(8), 1425–1432 (2002). [CrossRef]
  12. A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010). [CrossRef]
  13. D. E. Zelmon, D. L. Small, and R. Page, “Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm,” Appl. Opt. 37(21), 4933–4935 (1998). [CrossRef]
  14. C. R. Hammond and S. R. Norman, “Silica based binary glass systems – refractive index behavior and composition in optical fibers,” Opt. Quantum Electron. 9(5), 399–409 (1977). [CrossRef]
  15. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984). [CrossRef] [PubMed]
  16. D. Marcuse, Light Transmission Optics (Van Nostrand, 1972), Chap. 8.
  17. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997). [CrossRef]
  18. C. Headley, J.B. Clayton, W.A. Reed, L. Eskildsen, and P.B. Hansen, “Technique for obtaining a 2.5 dB increase in the stimulated Brillouin scattering threshold of Ge-doped fibers by varying fiber draw tension,” OFC Technical Digest, paper WL25, pp. 186 – 187, 1997.
  19. W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007). [CrossRef]
  20. K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986). [CrossRef]
  21. P. D. Dragic, “Simplified model for effect of Ge doping on silica fiber acoustic properties,” Electron. Lett. 45(5), 256–257 (2009). [CrossRef]
  22. C. Krischer, “Optical measurements of ultrasonic attenuation and reflection losses in fused silica,” J. Acoust. Soc. Am. 48(5B), 1086–1092 (1970). [CrossRef]
  23. V. R. Johnson and F. A. Olson, “Photoelastic properties of YAG,” Proc. IEEE 55(5), 709–710 (1967). [CrossRef]
  24. G. W. Faris, L. E. Jusinski, and A. P. Hickman, “High-resolution stimulated Brillouin gain spectroscopy in glasses and crystals,” J. Opt. Soc. Am. B 10(4), 587–599 (1993). [CrossRef]
  25. F. Detraux and X. Gonze, “Photoelasticity of α-quartz from first principles,” Phys. Rev. B 63(11), 115118 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited