OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10209–10221

Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses

Mangirdas Malinauskas, Albertas Žukauskas, Gabija Bičkauskaitė, Roaldas Gadonas, and Saulius Juodkazis  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 10209-10221 (2010)
http://dx.doi.org/10.1364/OE.18.010209


View Full Text Article

Enhanced HTML    Acrobat PDF (1507 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three-dimensional (3D) micro/nano-structuring of photo-resists is systematically studied at the close-to-dielectric-breakdown irradiance. It is demonstrated that avalanche absorption is playing a major part in free electron generation and chemical bond breaking at these conditions. The steps of photo-initiation and chemical bond breaking in propagation of polymerization are altered as compared with photo-polymerization at low-irradiance and one-photon stereo-lithography. The avalanche dominates radical generation and promotion of polymerization at tight focusing and a high ~TW/cm2 irradiance. The rates of electron generation by two-photon absorption and avalanche are calculated for the experimental conditions. Simulation results are corroborated by 3D polymerization in three resists with different photo-initiators at two different wavelengths and pulse durations. The smallest feature sizes of 3D polymerized logpile structures are consistent with spectral dependencies of the two photon nonlinearities. Implications of these findings for achieving sub-100 nm resolution in 3D structuring of photo-polymers are presented.

© 2010 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(220.4000) Optical design and fabrication : Microstructure fabrication
(160.1245) Materials : Artificially engineered materials

ToC Category:
Laser Microfabrication

History
Original Manuscript: March 8, 2010
Revised Manuscript: April 2, 2010
Manuscript Accepted: April 5, 2010
Published: April 30, 2010

Citation
Mangirdas Malinauskas, Albertas Žukauskas, Gabija Bičkauskaitė, Roaldas Gadonas, and Saulius Juodkazis, "Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses," Opt. Express 18, 10209-10221 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10209


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Farsari, and B. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3, 450–452 (2009). [CrossRef]
  2. J. K. Gansel, K. Justyna, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,” Science 325, 1513–1515 (2009). [CrossRef] [PubMed]
  3. R. R. Gattass, and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–222 (2008). [CrossRef]
  4. T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88, 081107 (2006). [CrossRef]
  5. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001). [CrossRef] [PubMed]
  6. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving ?/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324, 910–913 (2009). [CrossRef] [PubMed]
  7. S. H. Park, T. W. Lim, D. Y. Yang, R. H. Kim, and K. S. Lee, “Improvement of spatial resolution in nanostereolithography using radical quencher,” Macromol. Res. 14, 559–564 (2006). [CrossRef]
  8. S. K. Sundaram, and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002). [CrossRef]
  9. C. A. Mack, Optical Lithography, (SPIE Field Guides, vol. FG06, SPIE Press, Bellingham, 2006). [CrossRef]
  10. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 2, 132–134 (1997). [CrossRef]
  11. R. A. Borisov, G. N. Dorojkina, N. I. Koroteev, V. M. Kozenkov, S. A. Magnitskii, D. V. Malakhov, A. V. Tarasishin, and A. M. Zheltikov, “Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters,” Laser Phys. 8, 1105 (1998).
  12. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28, 301–303 (2003). [CrossRef] [PubMed]
  13. M. Straub, and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27, 1824–1826 (2002). [CrossRef]
  14. S. H. Park, S. H. Lee, D.-Y. Yang, H. J. Kong, and K.-S. Lee, “Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization,” Appl. Phys. Lett. 87, 154108 (2005). [CrossRef]
  15. F. Qi, Y. Li, D. Tan, H. Yang, and Q. Gong, “Polymerized nanotips via two-photon photopolymerization,” Opt. Express 15, 971–976 (2007). [CrossRef] [PubMed]
  16. M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro- and nanostructures over a large area,” in Proceedings of Micromachining and Microfabrication Process Technology XIV, Proc. SPIE 7204, 72040C (2009).
  17. A. Pikulin, and N. Bityurin, “Spatial resolution in polymerization of sample features at nanoscale,” Phys. Rev. B 75, 195430 (2009). [CrossRef]
  18. N. Uppal, and P. S. Shiakolas, “Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics,” J. Micro/Nanolith MEMS MOEMS 7, 043002 (2008). [CrossRef]
  19. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89, 024106 (2006). [CrossRef]
  20. T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95, 6072–6076 (2004). [CrossRef]
  21. H. Xia, W.-Y. Zhang, F.-F. Wang, D. Wu, X.-W. Liu, L. L. Chen, Q.-D. Chen, Y.-G. Ma, and H.-B. Sun, “Three-dimensional micronanofabrication via two-photon-excited photoisomerization,” Appl. Phys. Lett. 95, 083118 (2009). [CrossRef]
  22. R. W. Boyd, Nonlinear Optics (Academic Press, London, 2nd ed., 2003).
  23. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2, 2257–2262 (2008). [CrossRef]
  24. A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-photon polymerization of hybrid sol-gel materials for photonics applications,” Laser Chem., 493059 (2008). [CrossRef]
  25. V. Mizeikis, K. K. Seet, S. Juodkazis, and H. Misawa, “Three-dimensional woodpile photonic crystal templates for infrared spectral range,” Opt. Lett. 29, 2061–2063 (2004). [CrossRef] [PubMed]
  26. A. E. Siegman, Lasers (University Science Books, Mill Valley, 1986).
  27. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  28. K. Kamada, “Characterization of two-photon absorption and its resonance enhancement by z-scan method,” in Proceedings of Nonlinear Optical Transmission and Multiphoton Processes in Organics II, Proc. SPIE 5516, 97–105 (2004).
  29. K. Kamada, K. Matsunaga, A. Yoshino, and K. Ohta, “Two-photon-absorption-induced accumulated thermal effect on femtosecond Z-scan experiments studied with time-resolved thermal-lens spectrometry and its simulation,” J. Opt. Soc. Am. B 20, 529–537 (2003). [CrossRef]
  30. R. DeSalvo, A. A. Said, D. Hagan, E.W. VanStryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n(2) in wide bandgap solids,” IEEE J. Quantum Electron. 32, 1324–1333 (1996). [CrossRef]
  31. M. Rumi, J. Ehrlich, A. Heikal, J. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J.-L. Bredas, “Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives,” J. Am. Chem. Soc. 122, 9500–9510 (2000). [CrossRef]
  32. N. Murazawa, S. Juodkazis, H. Misawa, and K. Kamada, “Two-photon excitation of dye-doped liquid crystal by a cw-laser irradiation,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 489, 310–319 (2008). [CrossRef]
  33. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional structuring of resists and resins by direct laser writing and holographic recording,” Adv. Polym. Sci. 213, 157–206 (2008).
  34. H. J. Eichler, F. Massmann, E. Biselli, K. Richter, M. Glotz, L. Konetzke, and X. Yang, “Laser-induced free carrier and temperature gratings in silicon,” Phys. Rev. B 36, 3247–3253 (1987). [CrossRef]
  35. E. Gamaly, A. Rode, B. Luther-Davies, and V. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002). [CrossRef]
  36. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996). [CrossRef]
  37. Y. P. Raizer, Laser-induced discharge phenomena (Consultant Bureau, New York, 1977).
  38. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005). [CrossRef]
  39. S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, “Recording and reading of three-dimensional optical memory in glasses,” Appl. Phys. B 77, 361–368 (2003). [CrossRef]
  40. K. Yamasaki, S. Juodkazis, T. Lippert, M. Watanabe, S. Matsuo, and H. Misawa, “Dielectric breakdown of rubber materials by femtosecond irradiation,” Appl. Phys., A Mater. Sci. Process. 76, 325–329 (2003). [CrossRef]
  41. S. Juodkazis, V. Mizeikis, Y. Nishijima, W. Ebina, H. Misawa, M. Kondo, and V. Švr?ek, “Three-dimensional femtosecond laser fabrication,” ECS Transact. 16, 57–63 (2009). [CrossRef]
  42. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106, 051101 (2009). [CrossRef]
  43. S. Maruo, and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization,” Appl. Phys. Lett. 76, 2656–2658 (2000). [CrossRef]
  44. S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, “Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation,” Bull. Chem. Soc. Jpn. 81, 411–448 (2008). [CrossRef]
  45. J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, “Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers,” Appl. Phys., A Mater. Sci. Process. 98, 551–556 (2010). [CrossRef]
  46. K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nano-particle-enhanced photopolymerization,” J. Phys. Chem. C 113, 11720–11724 (2009). [CrossRef]
  47. S. Juodkazis, V. Mizeikis, K. K. Seet, H. Misawa, and U. G. K. Wegst, “Mechanical properties and tuning of three-dimensional polymeric photonic crystals,” Appl. Phys. Lett. 91, 241904 (2007). [CrossRef]
  48. Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20, 035004 (2010). [CrossRef]
  49. A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: Fabrication and fluorescence imaging via ruby R lines,” Opt. Express 17, 10076–10081 (2009). [CrossRef] [PubMed]
  50. K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process. 81, 1–10 (2005). [CrossRef]
  51. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. D. Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5µm by astigmatic beam focusing,” Opt. Lett. 27, 1938–1940 (2002). [CrossRef]
  52. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009). [CrossRef] [PubMed]
  53. D. Day, and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939–5946 (2005). [CrossRef] [PubMed]
  54. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys., A Mater. Sci. Process. 77, 109–111 (2003). [CrossRef]
  55. L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005). [CrossRef] [PubMed]
  56. T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys., A Mater. Sci. Process. 81, 1583–1586 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited