OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10222–10229

Large phase-stepping approach for high-resolution hard X-ray grating-based multiple-information imaging

Zhifeng Huang, Zhiqiang Chen, Li Zhang, Kejun Kang, Fei Ding, Zhentian Wang, and Haozhi Ma  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 10222-10229 (2010)
http://dx.doi.org/10.1364/OE.18.010222


View Full Text Article

Enhanced HTML    Acrobat PDF (854 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-resolution hard X-ray grating-based imaging method with conventional X-ray sources provides attenuation, refraction and scattering information synchronously, and it is regarded as the next-generation X-ray imaging technology for medical and industrial applications. In this letter, a large phase-stepping approach with at least one order of magnitude lower resolution of the movement is presented to equivalently substitute the current high-positioning-resolution phase-stepping approach. Both the theoretical deduction and actual experiment prove that the new approach is available to relax the requirement of high positioning resolution and strict circumstances so as to benefit the future commercial applications of the grating-based multiple-information imaging technology.

© 2010 OSA

OCIS Codes
(110.7440) Imaging systems : X-ray imaging
(120.4820) Instrumentation, measurement, and metrology : Optical systems

ToC Category:
X-ray Optics

History
Original Manuscript: March 16, 2010
Revised Manuscript: April 21, 2010
Manuscript Accepted: April 21, 2010
Published: April 30, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Zhifeng Huang, Zhiqiang Chen, Li Zhang, Kejun Kang, Fei Ding, Zhentian Wang, and Haozhi Ma, "Large phase-stepping approach for high-resolution hard X-ray grating-based multiple-information imaging," Opt. Express 18, 10222-10229 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10222


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2(9), 413–415 (1971). [CrossRef]
  2. S. Yokozeki and T. Suzuki, “Shearing interferometer using the grating as the beam splitter,” Appl. Opt. 10(7), 1575–1580 (1971). [CrossRef] [PubMed]
  3. O. Kafri, “Noncoherent method for mapping phase objects,” Opt. Lett. 5(12), 555–557 (1980). [CrossRef] [PubMed]
  4. J. F. Clauser and S. Li, ““Heisenberg microscope” decoherence atom interferometry,” Phys. Rev. A 50(3), 2430–2433 (1994). [CrossRef] [PubMed]
  5. C. David, B. Nohammer, H. H. Solak, and E. Ziegler, “Differential x-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett. 81(17), 3287–3289 (2002). [CrossRef]
  6. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of X-Ray Talbot Interferometry,” Jpn. J. Appl. Phys. 42(Part 2, No. 7B), L866–L868 (2003). [CrossRef]
  7. A. Momose, S. Kawamoto, I. Koyama, and Y. Suzuki, “Phase tomography using an x-ray Talbot interferometer,” Proc. SPIE 5535, 352–360 (2004). [CrossRef]
  8. T. Weitkamp, A. Diaz, B. Nohammer, F. Pfeiffer, T. Rohbeck, P. Cloetens, M. Stampanoni, and C. David, “Hard x-ray phase imaging and tomography with a grating interferometer,” Proc. SPIE 5535, 137–142 (2004). [CrossRef]
  9. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13(16), 6296–6304 (2005). [CrossRef] [PubMed]
  10. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys. 2(4), 258–261 (2006). [CrossRef]
  11. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7(2), 134–137 (2008). [CrossRef] [PubMed]
  12. Z. Huang, K. Kang, L. Zhang, Z. Chen, F. Ding, Z. Wang, and Q. Fang, “Alternative method for differential phase-contrast imaging with weakly coherent hard x rays,” Phys. Rev. A 79(1), 013815 (2009). [CrossRef]
  13. Z.Huang, Z.Wang, L.Zhang, Z.Chen, K.Kang, “Attenuation-Refraction-Scattering Computed Tomographic Experimental System with a Conventional X-Ray Tube: System Optimization & Image Fusion,” IEEE NSS/MIC Record, 2347–2350 (2009)
  14. T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova, J. Mohr, E. Hempel, S. Popescu, M. Hoheisel, M. Schuster, J. Baumann, and C. David, “Inverse geometry for grating-based x-ray phase-contrast imaging,” J. Appl. Phys. 106(5), 054703 (2009). [CrossRef]
  15. Y. I. Nesterets and S. W. Wilkins, “Phase-contrast imaging using a scanning-double-grating configuration,” Opt. Express 16(8), 5849–5867 (2008). [CrossRef] [PubMed]
  16. M. Engelhardt, C. Kottler, O. Bunk, C. David, C. Schroer, J. Baumann, M. Schuster, and F. Pfeiffer, “The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources,” J. Microsc. 232(1), 145–157 (2008). [CrossRef] [PubMed]
  17. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase Tomography by X-ray Talbot Interferometry for Biological Imaging,” Jpn. J. Appl. Phys. 45(6A6A), 5254–5262 (2006). [CrossRef]
  18. A. Momose, W. Yashiro, M. Moritake, Y. Takeda, K. Uesugi, A. Takeuchi, Y. Suzuki, M. Tanaka, and T. Hattori, “Biomedical imaging by Talbot-type x-ray phase tomography,” Proc. SPIE 6318, 63180T (2006). [CrossRef]
  19. W. Yashiro, Y. Takeda, and A. Momose, “Efficiency of capturing a phase image using cone-beam x-ray Talbot interferometry,” J. Opt. Soc. Am. A 25(8), 2025–2039 (2008). [CrossRef]
  20. Z. Wang, K. Kang, Z. Huang, and Z. Chen, “Quantitative grating-based x-ray dark-field computed tomography,” Appl. Phys. Lett. 95(9), 094105 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited