OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10230–10246

Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities

A. Meldrum, P. Bianucci, and F. Marsiglio  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 10230-10246 (2010)
http://dx.doi.org/10.1364/OE.18.010230


View Full Text Article

Enhanced HTML    Acrobat PDF (2233 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the spontaneous emission modifications when ensembles of quantum dots (QDs) with differing emission frequencies and finite Lorentzian linewidths are coupled to a microcavity. Using contour integrals we develop a general expression for the rate enhancement when neither the emitter nor the cavity resonance can be treated as a delta function. We show that the ensemble cavity-coupled luminescence lifetimes are generally suppressed in the case of spherical cavities and that the spontaneous emission dynamics of the cavity coupled component becomes increasingly stretched as the coupling factor increases. The Q-factor measured from the luminescence spectrum can be much lower than the intrinsic cavity Q-factor, and is in many practical situations limited by the QD spectral width. The mode spectrum observed in the photoluminescence (PL) spectrum can be largely determined by the QD emission linewidth, permitting this parameter to be extracted without requiring single-particle spectroscopy. In the case of Si-QDs, the linewidth cannot be significantly greater than 10 meV in order to observe spherical cavity resonances in the PL spectrum.

© 2010 OSA

OCIS Codes
(230.1150) Optical devices : All-optical devices
(230.5750) Optical devices : Resonators
(250.5230) Optoelectronics : Photoluminescence
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Optical Devices

History
Original Manuscript: March 17, 2010
Revised Manuscript: April 22, 2010
Manuscript Accepted: April 25, 2010
Published: April 30, 2010

Citation
A. Meldrum, P. Bianucci, and F. Marsiglio, "Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities," Opt. Express 18, 10230-10246 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10230


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006). [CrossRef] [PubMed]
  2. H. Yokoyama, Y. Nambu, and T. Kawakami, “Controlling spontaneous emission and optical microcavities,” in Confined Electrons and Photons, edited by E. Burstein and C. Weisbuch, Plenum Press, NY, 1995, pp. 427–466.
  3. M. Kaniber, A. Laucht, A. Neumann, M. Villas-Bôas, M. Bichler, M.-C. Amann, and J. J. Finley, “Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities,” Phys. Rev. B 77(16), 161303 (2008). [CrossRef]
  4. T. Tawara, H. Kamada, S. Hughes, H. Okamoto, M. Notomi, and T. Sogawa, “Cavity mode emission in weakly coupled quantum dot--cavity systems,” Opt. Express 17(8), 6643–6654 (2009). [CrossRef] [PubMed]
  5. J.-Y. Marzin, J.-M. Gérard, A. Izraël, D. Barrier, and G. Bastard, “Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs,” Phys. Rev. Lett. 73(5), 716–719 (1994). [CrossRef] [PubMed]
  6. X. Fan, P. Palinginis, S. Lacey, H. Wang, and M. C. Lonergan, “Coupling semiconductor nanocrystals to a fused-silica microsphere: a quantum-dot microcavity with extremely high Q factors,” Opt. Lett. 25(21), 1600–1602 (2000). [CrossRef]
  7. K. Leosson, D. Birkedal, I. Magnusdottir, W. Langbein, and J. M. Hvam, “Homogeneous linewidth of self-assembled III–V quantum dots observed in single-dot photoluminescence,” Physica E 17, 1–6 (2003). [CrossRef]
  8. L. Pavesi, “Silicon-Based light sources for silicon integrated circuits,” Adv. Opt. Technol. 2008, 416926 (2008).
  9. Y. Yamamoto, “Quantum Communication and Information Processing with Quantum Dots,” Quantum Inf. Process. 5(5), 299–311 (2006). [CrossRef]
  10. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  11. S. Chan, Y. Li, R. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing,” Mater. Sci. Eng. C 15(1-2), 277–282 (2001). [CrossRef]
  12. P. Bianucci, J. R. Rodríguez, C. M. Clements, J. G. C. Veinot, and A. Meldrum, “Silicon nanocrystal luminescence coupled to whispering gallery modes in optical fibers,” J. Appl. Phys. 105(2), 023108 (2009). [CrossRef]
  13. A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009). [CrossRef]
  14. B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78(23), 235306 (2008). [CrossRef]
  15. D. E. Gómez, I. Pastoriza-Santos, and P. Mulvaney, “Tunable whispering gallery mode emission from quantum-dot-doped microspheres,” Small 1(2), 238–241 (2005). [CrossRef]
  16. A. M. Fox, Quantum Optics: An Intruduction, Oxford University Press, Oxford, 2006.
  17. J. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998). [CrossRef]
  18. A. Belarouci and F. Gourbilleau, “Microcavity enhanced spontaneous emission from silicon nanocrystals,” J. Appl. Phys. 101(7), 073108 (2007). [CrossRef]
  19. R. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78(2), 023829 (2008). [CrossRef]
  20. M. Ghulinyan, D. Navarro-Urrios, A. Pitanti, A. Lui, G. Pucker, and L. Pavesi, “Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator,” Opt. Express 16(17), 13218–13224 (2008). [CrossRef] [PubMed]
  21. P. Bianucci, J. R. Rodriguez, F. C. Lenz, J. C. G. Veinot, and A. Meldrum, “Mode structure in the luminescence of Si-nc in cylindrical microcavities,” Physica E 41(6), 1107–1110 (2009). [CrossRef]
  22. R. Kohlrausch, “Ueber das Dellmann'sche Elektrometer,” Ann. Phys. 91, 353–405 (1854).
  23. H. Pollard, “The representation of $e^{ - x^\lambda }$ as a Laplace integral,” Bull. Am. Math. Soc. 52(10), 908–911 (1946). [CrossRef]
  24. M. N. Berberan-Santos, E. N. Bodunov, and B. Valeur, “Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential),” Chem. Phys. 315(1-2), 171–182 (2005). [CrossRef]
  25. J. Wang, X. F. Wang, Q. Li, A. Hryciw, and A. Meldrum, “The microstructure of SiO thin films: from nanoclusters to nanocrystals,” Philos. Mag. 87(1), 11–27 (2007). [CrossRef]
  26. I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94(8), 087405 (2005). [CrossRef] [PubMed]
  27. V. Belyakov, V. Burdov, R. Lockwood, and A. Meldrum, “Silicon Nanocrystals: Fundamental Theory and Implications for Stimulated Emission,” Adv. Opt. Technol. 2008, 279502 (2008).
  28. M. Dovrat, Y. Goshen, J. Jedrzejewski, I. Balberg, and A. Sa’ar, “Radiative versus nonradiative decay processes in silicon nanocrystals probed by time-resolved photoluminescence spectroscopy,” Phys. Rev. B 69(15), 155311 (2004). [CrossRef]
  29. L. A. Weinstein, Open Resonators and Open Waveguides. The Golem Press, Boulder, CO, 1969.
  30. S. M. Spillane, Fiber-coupled Ultra-high-Q Microresonators for Nonlinear and Quantum Optics, California Institute of Technology PhD Thesis, 2004; see also V.B. Braginsky, M.L. Gorodetsky, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
  31. K. Ujihara, “Spontaneous emission and the concept of effective area in a very short optical cavity with plane-parallel dielectric mirrors,” Jpn. J. Appl. Phys. 30(Part 2, No. 5B5b), L901–L903 (1991). [CrossRef]
  32. V. Vinciguerra, G. Franzo, F. Priolo, F. Iacona, and C. Spinella, “Quantum confinement and recombination dynamics in silicon nanocrystals embedded in Si/SiO2 superlattices,” J. Appl. Phys. 87(11), 8165–8173 (2000). [CrossRef]
  33. J. Valenta, R. Juhasz, and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80(6), 1070 (2002). [CrossRef]
  34. A. Beltaos and A. Meldrum, “Whispering gallery modes in silicon-nanocrystal-coated silica microspheres,” J. Lumin. 126(2), 607–613 (2007). [CrossRef]
  35. A. Pitanti, M. Ghulinyan, D. Navarro-Urrios, G. Pucker, and L. Pavesi, “Probing the spontaneous emission dynamics in Si-nanocrystals-based microdisk resonators,” Phys. Rev. Lett. 104(10), 103901 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited