OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10343–10353

All-optical modulation-transparent wavelength multicasting in a highly nonlinear fiber Sagnac loop mirror

Dawei Wang, Tee-Hiang Cheng, Yong-Kee Yeo, Jianguo Liu, Zhaowen Xu, Yixin Wang, and Gaoxi Xiao  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 10343-10353 (2010)
http://dx.doi.org/10.1364/OE.18.010343


View Full Text Article

Enhanced HTML    Acrobat PDF (1939 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An all-optical wavelength multicasting scheme using four-wave mixing (FWM) in a highly nonlinear fiber (HNLF) Sagnac loop mirror has been demonstrated. This proposed scheme has the advantage that even when the wavelength of a multicast channel overlaps with the pump-pump generated idler, clear eye diagram can still be observed. Six and ten 10-Gb/s multicast channels, compliant with the ITU grid, are successfully obtained by using two- and three-pump lasers, respectively. Multicasting of on-off shift keying (OOK) and differential phase-shift keying (DPSK) signals are both successfully demonstrated. The maximum power penalty of the multicast channels is less than 3.5 dB. Furthermore, compared with the non-loop configuration, up to 1.2 dB power penalty improvement can be achieved in this proposed Sagnac loop configuration.

© 2010 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.1155) Fiber optics and optical communications : All-optical networks
(060.4255) Fiber optics and optical communications : Networks, multicast

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 22, 2010
Revised Manuscript: March 25, 2010
Manuscript Accepted: April 29, 2010
Published: May 4, 2010

Citation
Dawei Wang, Tee-Hiang Cheng, Yong-Kee Yeo, Jianguo Liu, Zhaowen Xu, Yixin Wang, and Gaoxi Xiao, "All-optical modulation-transparent wavelength multicasting in a highly nonlinear fiber Sagnac loop mirror," Opt. Express 18, 10343-10353 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10343


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. N. Rouskas, “Optical layer multicast: Rationale, building blocks, and challenges,” IEEE/ACM Trans. Netw. 17(1), 60–65 (2003).
  2. C. H. Kwok, S. H. Lee, K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive all optical wavelength multicasting by self phase-modulation in a photonic-crystal fiber,” in Proceedings of CLEO2006, Long Beach, CA, May 2006, Paper CTuD4.
  3. J. J. Yu, X. Y. Zheng, F. H. Liu, C. Peucheret, A. T. Clausen, H. N. Poulsen, and P. Jeppsen, “8 × 40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source,” IEEE Photon. Technol. Lett. 12(3), 912–914 (2000). [CrossRef]
  4. N. Yan, H.-D. Jung, I. T. Monroy, H. D. Waardt, and T. Koonen, “All-optical multi-wavelength conversion with negative power penalty by a commercial SOA-MZI for WDM wavelength multicast,” in Proceedings of OFC 2007, Anaheim, CA, Mar. 2007, Paper JWA36.
  5. G. Contestabile, N. Calabretta, R. Proietti, and E. Ciaramella, “Double-stage cross-gain modulation in SOAs: An effective technique for WDM multicasting,” IEEE Photon. Technol. Lett. 18(1), 181–183 (2006). [CrossRef]
  6. K. K. Y. Wong, G. W. Lu, K. C. Lau, P. K. A. Wai, and L. K. Chen, “All-optical wavelength conversion and multicasting by cross-gain modulation in a single-stage fiber optical parametric amplifier,” in Proceedings of OFC 2007, Anaheim, CA, Mar. 2007, Paper OTuI4.
  7. L. Xu, N. Chi, K. Yvind, L. Christiansen, L. Oxenløwe, J. Mørk, P. Jeppesen, and J. Hanberg, “7x 40 Gb/s base-rate RZ all-optical broadcasting utilizing an electroabsorption modulator,” Opt. Express 12(3), 416–420 (2004). [CrossRef] [PubMed]
  8. K. K. Chow and C. Shu, “All-optical signal regeneration with wavelength multicasting at 6x10 Gb/s using a single electroabsorption modulator,” Opt. Express 12(13), 3050–3054 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-3050 . [CrossRef] [PubMed]
  9. C.-S. Brès, N. Alic, E. Myslivets, and S. Radic, “Scalable multicasting in one-pump parametric amplifier,” J. Lightwave Technol. 27(3), 356–363 (2009). [CrossRef]
  10. C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320-Gb/s channel in self seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009). [CrossRef]
  11. R. Elschner, C.-A. Bunge, B. HÜttl, A. G. i Coca, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, and K. Petermann, “Impact of pump-phase modulation on FWM-based wavelength conversion of D(Q)PSK signals,” IEEE J. Sel. Top. Quantum Electron. 14(3), 666–673 (2008). [CrossRef]
  12. A. H. Gnauck and P. J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23(1), 115–130 (2005). [CrossRef]
  13. Y. J. Wen, J. Mo, Y. Wang, and C. Lu, “Advanced data modulation techniques for WDM transmission,” IEEE Commun. Mag. 44(8), 58–65 (2006). [CrossRef]
  14. X. Zhou and J. Yu, “Multi-level, multi-dimensional coding for high speed and high-spectral efficiency optical transmission,” J. Lightwave Technol. 27(16), 3641–3653 (2009). [CrossRef]
  15. M. P. Fok and C. Shu, “Performance investigation of one-to-six wavelength multicasting of ASK-DPSK signal in a highly nonlinear bismuth oxide fiber,” J. Lightwave Technol. 27(15), 2953–2957 (2009). [CrossRef]
  16. Y. Wang, C. Yu, T. Luo, L. Yan, Z. Pan, and A. E. Willner, “Tunable all-optical wavelength conversion and wavelength multicasting using orthogonally polarized fiber FWM,” J. Lightwave Technol. 23(10), 3331–3338 (2005). [CrossRef]
  17. K. Lau, S. H. Wang, L. Xu, C. Lu, H. Y. Tam, and P. K. A. Wai, “All-optical multicast switch employing Raman-assisted FWM in dispersion-shifted fiber,” IEEE Photon. Technol. Lett. 20(20), 1730–1732 (2008). [CrossRef]
  18. G.-W. Lu, K. S. Abedin, and T. Miyazaki, “DPSK multicast using multiple-pump FWM in Bismuths highly nonlinear fiber with high multicast efficiency,” Opt. Express 16(26), 21964–21970 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21964 . [CrossRef] [PubMed]
  19. K. Mori, T. Morioka, and M. Saruwatari, “Optical parametric loop mirror,” Opt. Lett. 20(12), 1424–1426 (1995). [CrossRef] [PubMed]
  20. E. A. Swanson and J. D. Moores, “A fiber frequency shifter with broad bandwidth, high conversion efficiency, pump and pump ASE cancellation, and rapid tenability for WDM optical networks,” IEEE Photon. Technol. Lett. 6(11), 1341–1343 (1994). [CrossRef]
  21. J. Liu, Y. K. Yeo, Y. Wang, L. Xue, D. Wang, W. Rong, L. Zhou, G. Xiao, X. Yu, and T. H. Cheng, “Pump-suppressed non-degenerate four-wave mixing in a highly nonlinear photonic crystal fiber Sagnac loop,” IEEE Photon. Technol. Lett. 20(24), 2129–2131 (2008). [CrossRef]
  22. T. Torounidis, B.-E. Olsson, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Fiber-optics parametric amplifier in a loop mirror configuration,” IEEE Photon. Technol. Lett. 17(2), 321–323 (2005). [CrossRef]
  23. M. Eiselt, W. Pieper, and H. G. Weber, “SLALOM: Semiconductor laser amplifier in a loop mirror,” J. Lightwave Technol. 13(10), 2099–2112 (1995). [CrossRef]
  24. S. N. Fu, P. Shum, L. Zhang, C. Wu, and A. M. Liu, “Design of SOA-based dual-loop optical buffer with a 3 /spl times/ 3 collinear coupler: guideline and optimizations,” J. Lightwave Technol. 24(7), 2768–2778 (2006). [CrossRef]
  25. G. P. Agrawal, The Nonlinear Fiber Optics, 4th edition. (Academic, 2007), pp. 329–363.
  26. A. Zhang and M. S. Demokan, “Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber,” Opt. Lett. 30(18), 2375–2377 (2005). [CrossRef] [PubMed]
  27. M. Takahashi, K. Mukasa, and T. Yagi, “Full C-L band tunable wavelength conversion by zero dispersion and zero dispersion slope HNLF,” in Proceedings of ECOC 2009, Vienna, Austria, Sept. 2009, Paper P1.08.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited