OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10360–10368

Coherent transport of nanowire surface plasmons coupled to quantum dots

Wei Chen, Guang-Yin Chen, and Yueh-Nan Chen  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 10360-10368 (2010)
http://dx.doi.org/10.1364/OE.18.010360


View Full Text Article

Enhanced HTML    Acrobat PDF (1174 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The coherent transport of surface plasmons with nonlinear dispersion relations on a metal nanowire coupled to two-level emitters is investigated theoretically. Real-space Hamiltonians are used to obtain the transmission and reflection spectra of the surface plasmons. For the single-dot case, we find that the scattering spectra can show completely different features due to the non-linear quadratic dispersion relation. For the double-dot case, we obtain the interference behavior in transmission and reflection spectra, similar to that in resonant tunneling through a double-barrier potential. Moreover, Fano-like line shape of the transmission spectrum is obtained due to the quadratic dispersion relation. All these peculiar behaviors indicate that the dot-nanowire system provides a one-dimensional platform to demonstrate the bandgap feature widely observed in photonic crystals.

© 2010 Optical Society of America

OCIS Codes
(230.4320) Optical devices : Nonlinear optical devices
(240.6680) Optics at surfaces : Surface plasmons
(270.1670) Quantum optics : Coherent optical effects
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 17, 2010
Revised Manuscript: April 22, 2010
Manuscript Accepted: April 27, 2010
Published: May 4, 2010

Citation
Wei Chen, Guang-Yin Chen, and Yueh-Nan Chen, "Coherent transport of nanowire surface plasmons coupled to quantum dots," Opt. Express 18, 10360-10368 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10360


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008). [CrossRef] [PubMed]
  2. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004). [CrossRef] [PubMed]
  3. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005). [CrossRef] [PubMed]
  4. K. Srinivasan, and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system,” Nature 450, 862–865 (2007). [CrossRef] [PubMed]
  5. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A Photon Turnstile Dynamically Regulated by One Atom,” Science 319, 1062–1065 (2008). [CrossRef] [PubMed]
  6. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009). [CrossRef]
  7. M. Rosenblit, P. Horak, S. Helsby, and R. Folman, “Single-atom detection using whispering-gallery modes of microdisk resonators,” Phys. Rev. A 70, 053808 (2004). [CrossRef]
  8. P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006). [CrossRef]
  9. J. T. Shen, and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett. 30, 2001 (2005). [CrossRef] [PubMed]
  10. J. T. Shen, and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009). [CrossRef]
  11. L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, “Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide,” Phys. Rev. Lett. 101, 100501 (2008). [CrossRef] [PubMed]
  12. L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum supercavity with atomic mirrors,” Phys. Rev. A 78, 063827 (2008). [CrossRef]
  13. J. Q. Liao, Z. R. Gong, L. Zhou, Y. X. Liu, C. P. Sun, and F. Nori, “Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities,” Phys. Rev. A 81, 042304 (2010). [CrossRef]
  14. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007). [CrossRef] [PubMed]
  15. Y. Fedutik, V. V. Temnov, O. Schops, U. Woggon, and M. V. Artemyev, “Exciton-Plasmon-Photon Conversion in Plasmonic Nanostructures,” Phys. Rev. Lett. 99, 136802 (2007). [CrossRef] [PubMed]
  16. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97, 053002 (2006). [CrossRef] [PubMed]
  17. G. Y. Chen, Y. N. Chen, and D. S. Chuu, “Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire,” Opt. Lett. 33, 2212–2214 (2008). [CrossRef] [PubMed]
  18. Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, “Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics,” Phys. Rev. A 79, 033815 (2009). [CrossRef]
  19. Y. N. Chen, G. Y. Chen, Y. Y. Liao, N. Lambert, and F. Nori, “Detecting non-Markovian plasmonic band gaps in quantum dots using electron transport,” Phys. Rev. B 79, 245312 (2009). [CrossRef]
  20. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3, 807–812 (2007). [CrossRef]
  21. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. D. Snapp, A. V. Akimov, M. H. Jo, M. D. Lukin, and H. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nat. Phys. 5, 475–479 (2009). [CrossRef]
  22. K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savelev, and F. Nori, “Unusual resonators: Plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201 (2008). [CrossRef]
  23. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987). [CrossRef] [PubMed]
  24. S. John, “Localization of Light,” Phys. Today 44, 32–40 (1991). [CrossRef]
  25. S. Savelev, A. L. Rakhmanov, and F. Nori, “Using Josephson Vortex Lattices to Control Terahertz Radiation: Tunable Transparency and Terahertz Photonic Crystals,” Phys. Rev. Lett. 94, 157004 (2005). [CrossRef] [PubMed]
  26. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited