OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10388–10394

Charge and current reservoirs for electric and magnetic field enhancement

Dongxing Wang, Tian Yang, and Kenneth B. Crozier  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 10388-10394 (2010)
http://dx.doi.org/10.1364/OE.18.010388


View Full Text Article

Enhanced HTML    Acrobat PDF (1141 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two optical antenna designs incorporating structures termed charge and current reservoirs are proposed to realize localized high electric and magnetic field enhancement, respectively. Simulation results show that the fan-rod electric antenna design combines the advantages of the rod antenna and the bowtie antenna, and has higher field enhancement than either. The performance of a loop shaped magnetic antenna consisting of a pair of metallic strips with offsets is also verified numerically, with high magnetic field enhancement being observed in the simulation. In both of the designs, the concepts of charge and current reservoirs contribute to high electric and magnetic field enhancement.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 26, 2010
Revised Manuscript: April 23, 2010
Manuscript Accepted: April 26, 2010
Published: May 4, 2010

Citation
Dongxing Wang, Tian Yang, and Kenneth B. Crozier, "Charge and current reservoirs for electric and magnetic field enhancement," Opt. Express 18, 10388-10394 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10388


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632 (2003). [CrossRef]
  2. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006). [CrossRef]
  3. N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91(17), 173113 (2007). [CrossRef]
  4. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15(20), 13272–13281 (2007). [CrossRef] [PubMed]
  5. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005). [CrossRef] [PubMed]
  6. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  7. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005). [CrossRef]
  8. E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nanorods,” J. Phys. Chem. B 110(5), 2150–2154 (2006). [CrossRef] [PubMed]
  9. E. X. Jin and X. Xu, “Radiation transfer through nanoscale apertures,” J. Quant. Spectrosc. Radiat. Transf. 93(1-3), 163–173 (2005). [CrossRef]
  10. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  11. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008). [CrossRef] [PubMed]
  12. C. Yan, Y. Cui, Q. Wang, and S. Zhuo, “Negative refractive indices of a confined discrete fishnet metamaterial at visible wavelengths,” J. Opt. Soc. Am. B 25(11), 1815 (2008). [CrossRef]
  13. C. Yan, Y. Cui, Q. Wang, S. Zhuo, and J. Li, “Negative refraction with high transmission at visible and near-infrared wavelengths,” Appl. Phys. Lett. 92(24), 241108 (2008). [CrossRef]
  14. G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8(4), S122–S130 (2006). [CrossRef]
  15. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef]
  16. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef]
  17. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  18. L. Ran, J. Huangfu, Y. Li, X. Zhang, K. Chen, and J. A. Kong, “Microwave solid-state left-handed material with a broad bandwidth and an ultralow loss,” Phys. Rev. B 70(7), 073102 (2004). [CrossRef]
  19. D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, and B. I. Wu, “Experimental validation of negative refraction of metamaterial composed of single side paired S-ring resonators,” Appl. Phys. Lett. 90(25), 254103 (2007). [CrossRef]
  20. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited