OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10404–10422

Image reconstruction exploiting object sparsity in boundary-enhanced X-ray phase-contrast tomography

Emil Y. Sidky, Mark A. Anastasio, and Xiaochuan Pan  »View Author Affiliations

Optics Express, Vol. 18, Issue 10, pp. 10404-10422 (2010)

View Full Text Article

Acrobat PDF (2303 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Propagation-based X-ray phase-contrast tomography (PCT) seeks to reconstruct information regarding the complex-valued refractive index distribution of an object. In many applications, a boundary-enhanced image is sought that reveals the locations of discontinuities in the real-valued component of the refractive index distribution. We investigate two iterative algorithms for few-view image reconstruction in boundary-enhanced PCT that exploit the fact that a boundary-enhanced PCT image, or its gradient, is often sparse. In order to exploit object sparseness, the reconstruction algorithms seek to minimize the ℓ1-norm or TV-norm of the image, subject to data consistency constraints. We demonstrate that the algorithms can reconstruct accurate boundary-enhanced images from highly incomplete few-view projection data.

© 2010 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Image Processing

Original Manuscript: October 26, 2009
Revised Manuscript: December 30, 2009
Manuscript Accepted: January 12, 2010
Published: May 5, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Emil Y. Sidky, Mark A. Anastasio, and Xiaochuan Pan, "Image reconstruction exploiting object sparsity in boundary-enhanced X-ray phase-contrast tomography," Opt. Express 18, 10404-10422 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Barty, K. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175(4), 329–336 (2000). [CrossRef]
  2. T. Weitkamp, C. Rau, A. Snigirev, B. Brenner, T. Gunzler, M. Kuhlmann, and C. Schroer, ““In-line phase contrast in synchrotron-radiation microradiography and tomography,” in Developments in X-ray Tomography III,” Proc. SPIE 4503, 92–102 (2002).
  3. P. Cloetens, R. Barrett, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D Appl. Phys. 29, 133–146 (1996). [CrossRef]
  4. A. V. Bronnikov, “Theory of quantitative phase-contrast computed tomography,” J. Opt. Soc. Am. A 19(3), 472–480 (2002). [CrossRef]
  5. T. E. Gureyev, D. M. Paganin, G. R. Myers, Y. I. Nesterest, and S. W. Wilkins, “Phase-and-amplitude computer tomography,” Appl. Phys. Lett. 89(034), 102 (2006). [CrossRef]
  6. M. A. Anastasio, D. Shi, Y. Huang, and G. Gbur, “Image Reconstruction in Spherical Wave Intensity Diffraction Tomography,” J. Opt. Soc. Am. A 22, 2651–2661 (2005). [CrossRef]
  7. P. Cloetens, M. Pateyron-Salome, J. Y. Buffiere, G. Peix, J. Baruchel, F. Peyrin, and M. Schlenker, “Observation of microstructure and damage in materials by phase sensitive radiography and tomography,” J. Appl. Phys. 81, 5878–5886 (1997). [CrossRef]
  8. P. Spanne, C. Raven, I. Snigireva, and A. Snigirev, “In-line holography and phase-contrast microtomography with high energy x-rays,” Phys. Med. Biol. 44(3), 741–749 (1999). [CrossRef]
  9. E. F. Donnelly, R. R. Price, K. G. Lewis, and D. R. Pickens, “Polychromatic phase-contrast computed tomography,” Med. Phys. 34(8), 3165–3168 (2007). [CrossRef]
  10. G. R. Myers, D. M. Paganin, T. Gureyev, and S. C. Mayo, “Phase-contrast tomography of single-material objects from few projections,” Opt. Express 16, 908–919 (2008). [CrossRef]
  11. G. R. Myers, T. E. Gureyev, D. M. Paganin, and S. C. Mayo, “The binary dissector: phase contrast tomography of two- and three-material objects from few projections,” Opt. Express 16, 10736–10749 (2008). [CrossRef]
  12. M. A. Anastasio, D. Shi, F. D. Carlo, and X. Pan, “Analytic image reconstruction in local phase-contrast tomography,” Phys. Med. Biol. 49, 121–144 (2004). [CrossRef]
  13. D. Shi, M. Anastasio, and X. Pan, “Reconstruction of refractive index discontinuities from truncated phase contrast tomography projections,” Appl. Phys. Lett. 86, 034102 (2005). [CrossRef]
  14. Y. Wang, F. D. Carlo, D. Mancini, I. McNulty, B. Tieman, J. Bresnahan, I. Foster, J. Insley, P. Lane, G. von Laszewski, C. Kesselman, M. Su, and M. Thiebaux, “A high-throughput x-ray microtomography system at the Advanced Photon Source,” Rev. Sci. Instrum. 72, 2062–2068 (2001). [CrossRef]
  15. E. Candes, J. Romberg, and T. Tao, “Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 3526–3530 (2006).
  16. A. Pogany, D. Gao, and S. W. Wilkins, “Contrast and resolution in imaging with a microfocus x-ray source,” Rev. Sci. Instrum. 68, 2774–2782 (1997). [CrossRef]
  17. T. E. Gureyev, and S. W. Wilkins, “On x-ray phase imaging with a point source,” J. Opt. Soc. Am. A 15(3), 579–585 (1998). [CrossRef]
  18. F. Natterer, The Mathematics of Computerized Tomography (Wiley, New York, 1986).
  19. M. Liebling, T. Blu, and M. Unser, “Fresnelets: New Multiresolution Wavelet Bases for Digital Holography,” IEEE Trans. Image Process. 12(1), 29–43 (2003). [CrossRef]
  20. H. Barrett, and K. Myers, Foundations of Image Science (Wiley Series in Pure and Applied Optics, 2004).
  21. A. Kak, and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  22. J. Tropp, “Just relax: Convex programming methods for identifying sparse signals,” IEEE Trans. Inf. Theory 51, 1030–1051 (2006). [CrossRef]
  23. E. Y. Sidky, R. Chartrand, and X. Pan, “Image reconstruction from few views by non-convex optimization,” IEEE Nucl. Sci. Conf. Rec. 5, 3526–3530 (2007).
  24. R. Baraniuk, “Compressive Sensing,” IEEE Signal Process. Mag. 24, 118–121 (2007). [CrossRef]
  25. M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Sig. Process. 1, 586–598 (2007). [CrossRef]
  26. M. Li, H. Yang, and H. Kudo, “An accurate iterative reconstruction algorithm for sparse objects: Application to 3D blood vessel reconstruction from a limited number of projections,” Phys. Med. Biol. 47, 2599–2609 (2002). [CrossRef]
  27. S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,” SIAM J. Sci. Comput. 20, 33–61 (1998). [CrossRef]
  28. F. Santosa, and W. Symes, “Linear inversion of band-limited reflection histograms,” SIAM J. Sci. Stat. Comput. 7, 1307–1330 (1986). [CrossRef]
  29. W. Souidene, A. Aissa-El-Bey, K. Abed-Meraim, and A. Beghdadi, “Blind Image Separation using Sparse Representation,” in ICIP 2007. IEEE International Conference on Image Processing, vol. 3, pp. III –125–III –128 (2007).
  30. E. Y. Sidky, C.-M. Kao, and X. Pan, ““Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-ray,” Sci. Tech. (Paris) 14, 119–139 (2006).
  31. E. Y. Sidky, and X. C. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Med. Biol. 53, 4777–4807 (2008). [CrossRef]
  32. G.-H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35(2), 660–663 (2008). [CrossRef]
  33. R. Chartrand, “Exact reconstruction of sparse signals via nonconvex minimization,” IEEE Signal Process. Lett. 14, 707–710 (2007). [CrossRef]
  34. T. Blumensath, and M. Davies, “Iterative hard thresholding for compressed sensing,” Appl. Comput. Harmon. Anal. 27, 265–274 (2009). [CrossRef]
  35. E. J. Candès, and M. B. Wakin, “An Introduction To Compressive Sampling,” IEEE Sig. Proc. Mag. 25, 21–30 (2008). [CrossRef]
  36. R. Garg, and K. Khandekar, “Gradient Descent with Sparsification: An iterative algorithm for sparse recovery with restricted isometry property,” Proceedings of the 26th Annual International Conference on Machine Learning 382, 337–344 (2009).
  37. C. Hamaker, and D. C. Solmon, “Angles between null spaces of x-rays,” J. Math. Anal. Appl. 62, 1–23 (1978). [CrossRef]
  38. G. T. Herman, and L. B. Meyer, “Algebraic reconstruction techniques can be made computationally efficient,” IEEE Trans. Med. Imaging 12, 600–609 (1993). [CrossRef]
  39. H. Q. Guan, and R. Gordon, “A projection access order for speedy convergence of ART (algebraic reconstruction technique) - a multilevel scheme for computed-tomography,” Phys. Med. Biol. 39, 2005–2022 (1994). [CrossRef]
  40. X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back projection for image reconstruction?” Inv. Prob. 25, 123009 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited