OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10446–10461

Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography

Sébastien Vergnole, Daniel Lévesque, and Guy Lamouche  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 10446-10461 (2010)
http://dx.doi.org/10.1364/OE.18.010446


View Full Text Article

Enhanced HTML    Acrobat PDF (1828 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We evaluate various signal processing methods to handle the non-linearity in wavenumber space exhibited by most laser sources for swept-source optical coherence tomography. The following methods are compared for the same set of experimental data: non-uniform discrete Fourier transforms with Vandermonde matrix or with Lomb periodogram, resampling with linear interpolation or spline interpolation prior to fast-Fourier transform (FFT), and resampling with convolution prior to FFT. By selecting an optimized Kaiser-Bessel window to perform the convolution, we show that convolution followed by FFT is the most efficient method. It allows small fractional oversampling factor between 1 and 2, thus a minimal computational time, while retaining an excellent image quality.

© 2010 OSA

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: February 1, 2010
Manuscript Accepted: April 18, 2010
Published: May 5, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Sébastien Vergnole, Daniel Lévesque, and Guy Lamouche, "Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography," Opt. Express 18, 10446-10461 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10446


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995). [CrossRef]
  2. G. Häusler and M. W. Linduer, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998). [CrossRef]
  3. Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32(24), 3525–3527 (2007). [CrossRef] [PubMed]
  4. G. V. Gelikonov, V. M. Gelikonov, and P. A. Shilyagin, “Linear wave-number spectrometer for spectral domain optical coherence tomography,” Proc. SPIE 6847, 68470N (2008). [CrossRef]
  5. V. Gelikonov, G. Gelikonov, and P. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009). [CrossRef]
  6. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8916 . [CrossRef] [PubMed]
  7. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007). [CrossRef]
  8. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005). [CrossRef]
  9. B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt. 12(4), 041214–041218 (2007). [CrossRef] [PubMed]
  10. E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13(2), 583–594 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-2-583 . [CrossRef] [PubMed]
  11. M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4-6), 569–578 (2005). [CrossRef]
  12. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2435 . [CrossRef] [PubMed]
  13. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795–1802 (2000). [CrossRef]
  14. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-26-3598 . [CrossRef] [PubMed]
  15. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-26-10652 . [CrossRef] [PubMed]
  16. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-3-367 . [CrossRef] [PubMed]
  17. A. R. Tumlinson, B. Hofer, A. M. Winkler, B. Považay, W. Drexler, and J. K. Barton, “Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling,” Appl. Opt. 47(5), 687–693 (2008). [CrossRef] [PubMed]
  18. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, “Profilometry with line-field Fourier-domain interferometry,” Opt. Express 13(3), 695–701 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-3-695 . [CrossRef] [PubMed]
  19. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1054 . [CrossRef] [PubMed]
  20. C. Fan, Y. Wang, and R. K. Wang, “Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection,” Opt. Express 15(13), 7950–7961 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-7950 . [CrossRef] [PubMed]
  21. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 . [CrossRef] [PubMed]
  22. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2156 . [CrossRef] [PubMed]
  23. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404 . [CrossRef] [PubMed]
  24. Y. T. Pan, Q. Wu, Z. G. Wang, P. R. Brink, and C. W. Du, “High-resolution imaging characterization of bladder dynamic morphophysiology by time-lapse optical coherence tomography,” Opt. Lett. 30(17), 2263–2265 (2005). [CrossRef] [PubMed]
  25. H. Ren, T. Sun, D. J. MacDonald, M. J. Cobb, and X. Li, “Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography,” Opt. Lett. 31(7), 927–929 (2006). [CrossRef] [PubMed]
  26. P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. A, Pure Appl. Opt. 9(4), 422–426 (2007). [CrossRef]
  27. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007). [CrossRef]
  28. Y. Chen, H. Zhao, and Z. Wang, “Investigation on spectral-domain optical coherence tomography using a tungsten halogen lamp as light source,” Opt. Rev. 16(1), 26–29 (2009). [CrossRef]
  29. A. Liu, R. Wang, K. L. Thornburg, and S. Rugonyi, “Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: application to 4-D reconstruction of the chick embryonic heart,” J. Biomed. Opt. 14(4), 044020–044011 (2009). [CrossRef] [PubMed]
  30. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3513 . [CrossRef] [PubMed]
  31. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, F. Hlawatsch, and W. Drexler, “Signal post processing in frequency domain OCT and OCM using a filter bank approach,” Proc. SPIE 6443, 64430O (2007). [CrossRef]
  32. S. S. Sherif, C. Flueraru, Y. Mao, and S. Change, “Swept Source Optical Coherence Tomography with Nonuniform Frequency Domain Sampling,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper BMD86.
  33. T. H. Chow, S. G. Razul, B. K. Ng, G. Ho, and C. B. A. Yeo, “Enhancement of Fourier domain optical coherence tomorgraphy images using discrete Fourier transform method,” Proc. SPIE 6847, 68472T (2008). [CrossRef]
  34. K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express 17(14), 12121–12131 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-12121 . [CrossRef] [PubMed]
  35. D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R (2009). [CrossRef]
  36. Y. Zhang, X. Li, L. Wei, K. Wang, Z. Ding, and G. Shi, “Time-domain interpolation for Fourier-domain optical coherence tomography,” Opt. Lett. 34(12), 1849–1851 (2009). [CrossRef] [PubMed]
  37. I. Gohberg and V. Olshevsky, “Fast algorithms with preprocessing for matrix-vector multiplication problems,” J. Complexity 10(4), 411–427 (1994). [CrossRef]
  38. V. V. Vityazev, “Time series analysis of unequally spaced data: Intercomparison between the Schuster periodogram and the LS-spectra,” Astron. Astrophys. Trans. 11(2), 139–158 (1996). [CrossRef]
  39. N. R. Lomb, “Least-squares frequency analysis of unequally spaced data,” Astrophys. Space Sci. 39(2), 447–462 (1976). [CrossRef]
  40. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN (Cambridge University Press, New York, 1992).
  41. P. N. Swarztrauber, Vectorizing the FFTs, in Parallel Computations, G. Rodrigue, ed. (Academic Press, New York, NY, 1982), pp. 51–83.
  42. M. Frigo, and S. G. Johnson, “FFTW: an adaptive software architecture for the FFT,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. (Institute of Electrical and Electronics Engineers, Seattle, 1998), pp. 1381–1384.
  43. J. I. Jackson, C. H. Meyer, D. G. Nishimura, and A. Macovski, “Selection of a convolution function for Fourier inversion using gridding computerised tomography application,” IEEE Trans. Med. Imaging 10(3), 473–478 (1991). [CrossRef] [PubMed]
  44. P. J. Beatty, D. G. Nishimura, and J. M. Pauly, “Rapid gridding reconstruction with a minimal oversampling ratio,” IEEE Trans. Med. Imaging 24(6), 799–808 (2005). [CrossRef] [PubMed]
  45. C.-É. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J.-P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53(237–N), 247 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited