OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10510–10523

Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects

Ahmet F. Coskun, Ikbal Sencan, Ting-Wei Su, and Aydogan Ozcan  »View Author Affiliations

Optics Express, Vol. 18, Issue 10, pp. 10510-10523 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1996 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the use of a compressive sampling algorithm for on-chip fluorescent imaging of sparse objects over an ultra-large field-of-view (>8 cm2) without the need for any lenses or mechanical scanning. In this lensfree imaging technique, fluorescent samples placed on a chip are excited through a prism interface, where the pump light is filtered out by total internal reflection after exciting the entire sample volume. The emitted fluorescent light from the specimen is collected through an on-chip fiber-optic faceplate and is delivered to a wide field-of-view opto-electronic sensor array for lensless recording of fluorescent spots corresponding to the samples. A compressive sampling based optimization algorithm is then used to rapidly reconstruct the sparse distribution of fluorescent sources to achieve ~10 µm spatial resolution over the entire active region of the sensor-array, i.e., over an imaging field-of-view of >8 cm2. Such a wide-field lensless fluorescent imaging platform could especially be significant for high-throughput imaging cytometry, rare cell analysis, as well as for micro-array research.

© 2010 OSA

OCIS Codes
(110.2970) Imaging systems : Image detection systems
(170.2520) Medical optics and biotechnology : Fluorescence microscopy

ToC Category:
Imaging Systems

Original Manuscript: March 12, 2010
Revised Manuscript: April 25, 2010
Manuscript Accepted: May 3, 2010
Published: May 5, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Ahmet F. Coskun, Ikbal Sencan, Ting-Wei Su, and Aydogan Ozcan, "Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects," Opt. Express 18, 10510-10523 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Commun. Pure Appl. Math. 59(8), 1207–1223 (2006). [CrossRef]
  2. E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?” IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006). [CrossRef]
  3. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). [CrossRef]
  4. D. J. Brady, Optical Imaging and Spectroscopy, (Wiley, 2009).
  5. J. Stinnett, and J. Gillenwater, “NIR Single Pixel Camera,” Connexions, http://cnx.org/content/col10525/1.1/ , (2008).
  6. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” in Computational Imaging IV, 6065, (San Jose, CA, USA), p. 606509, SPIE, (2006).
  7. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, K. F. Ting Sun, Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008). [CrossRef]
  8. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15(21), 14013–14027 (2007). [CrossRef] [PubMed]
  9. A. Wagadarikar, R. John, R. Willett, and D. J. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47(10), B44–B51 (2008). [CrossRef] [PubMed]
  10. W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33(9), 974–976 (2008). [CrossRef] [PubMed]
  11. J. Romberg, “Imaging via Compressive Sampling,” IEEE Signal Process. Mag. 25(2), 14–20 (2008). [CrossRef]
  12. M. Sheikh, O. Milenkovic, and R. Baraniuk, “Designing compressive sensing DNA microarrays” IEEE Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), St. Thomas, U.S. Virgin Islands, December (2007)
  13. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58(6), 1182–1195 (2007). [CrossRef] [PubMed]
  14. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009). [CrossRef] [PubMed]
  15. L. Denis, D. Lorenz, E. Thiébaut, C. Fournier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34(22), 3475–3477 (2009). [CrossRef] [PubMed]
  16. H. Yu and G. Wang, “Compressed sensing based interior tomography,” Phys. Med. Biol. 54(9), 2791–2805 (2009). [CrossRef] [PubMed]
  17. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information,” Opt. Express 17(10), 8062–8080 (2009). [CrossRef] [PubMed]
  18. H. Gao and H. Zhao, “Multilevel bioluminescence tomography based on radiative transfer equation Part 1: l1 regularization,” Opt. Express 18(3), 1854–1871 (2010). [CrossRef] [PubMed]
  19. A. F. Coskun, T. W. Su, and A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10(7), 824–827 (2010). [CrossRef] [PubMed]
  20. S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007). [CrossRef] [PubMed]
  21. S. K. Murthy, A. Sin, R. G. Tompkins, and M. Toner, “Effect of flow and surface conditions on human lymphocyte isolation using microfluidic chambers,” Langmuir 20(26), 11649–11655 (2004). [CrossRef] [PubMed]
  22. A. A. Adams, P. I. Okagbare, J. Feng, M. L. Hupert, D. Patterson, J. Göttert, R. L. McCarley, D. Nikitopoulos, M. C. Murphy, and S. A. Soper, “Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor,” J. Am. Chem. Soc. 130(27), 8633–8641 (2008). [CrossRef] [PubMed]
  23. S. J. Tan, L. Yobas, G. Y. H. Lee, C. N. Ong, and C. T. Lim, “Microdevice for the isolation and enumeration of cancer cells from blood,” Biomed. Microdevices 11(4), 883 (2009). [CrossRef] [PubMed]
  24. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  25. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  26. S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An Interior-Point Method for Large-Scale l1-Regularized Least Squares,” IEEE J. Sel. Top. Signal Processing 1(4), 606–617 (2007). [CrossRef]
  27. S. Seo, T. W. Su, D. K. Tseng, A. Erlinger, and A. Ozcan, “Lensfree holographic imaging for on-chip cytometry and diagnostics,” Lab Chip 9(6), 777–787 (2009). [CrossRef] [PubMed]
  28. C. Oh, S. O. Isikman, B. Khademhosseinieh, and A. Ozcan, “On-chip differential interference contrast microscopy using lensless digital holography,” Opt. Express 18(5Issue 5), 4717–4726 (2010). [CrossRef] [PubMed]
  29. W. H. Richardson, “Bayesian-Based Iterative Method of Image Restoration,” J. Opt. Soc. Am. 62(1), 55–59 (1972). [CrossRef]
  30. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745–754 (1974). [CrossRef]
  31. D. S. C. Biggs and M. Andrews, “Acceleration of iterative image restoration algorithms,” Appl. Opt. 36(8), 1766–1775 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited