OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10642–10649

Dynamics of material modifications following laser-breakdown in bulk fused silica

R. A. Negres, M. D. Feit, and S. G. Demos  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 10642-10649 (2010)
http://dx.doi.org/10.1364/OE.18.010642


View Full Text Article

Enhanced HTML    Acrobat PDF (1747 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the material response during the cooling phase in bulk fused silica following localized energy deposition via laser-induced breakdown. We use a time-resolved microscope system to acquire images of the region of energy deposition at delay times covering the entire timeline of events. In addition, this system is configured to perform pump-and-probe damage testing measurements to investigate the evolution of the transient absorption of the modified material. The main features of a damage site are established at ~30 ns after the pump pulse, i.e. cracks reach their final size within this time frame. The results reveal that the cracks and melted core exhibit a transient absorption up until about 300 ns and 200 μs delay times, respectively, and suggest that the melted region returns to solid phase at ~70 ms delay.

© 2010 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(140.3440) Lasers and laser optics : Laser-induced breakdown
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 16, 2010
Revised Manuscript: April 27, 2010
Manuscript Accepted: May 2, 2010
Published: May 6, 2010

Citation
R. A. Negres, M. D. Feit, and S. G. Demos, "Dynamics of material modifications following laser-breakdown in bulk fused silica," Opt. Express 18, 10642-10649 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10642


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. . C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laserinduced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004). [CrossRef] [PubMed]
  2. . S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006). [CrossRef] [PubMed]
  3. . B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-tofemtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996). [CrossRef]
  4. . X. Zeng, X. Mao, S. S. Mao, S.-B. Wen, R. Greif, and R. E. Russo, “Laser-induced shockwave propagation from ablation in a cavity,” Appl. Phys. Lett. 88, 061502 (2006). [CrossRef]
  5. . H. Jiang, J. McNary, H. W. K. Tom, M. Yan, H. B. Radousky, and S. G. Demos, “Nanosecond time-resolved multiprobe imaging of laser damage in transparent solids,” Appl. Phys. Lett. 81, 3149–3151 (2002). [CrossRef]
  6. . E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025 (1996). [CrossRef] [PubMed]
  7. . C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001). [CrossRef]
  8. . K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast Processes for Bulk Modification of Transparent Materials,” MRS Bull. 31, 620–625 (2006). [CrossRef]
  9. . S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10, 1444–1450 (2002). [PubMed]
  10. . From http://www.corning.com/docs/specialtymaterials/pisheets/H0607_hpfs_ Standard_ProductSheet.pdf.
  11. . M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability, pulselength scaling and laser conditioning,” Proc. SPIE 5273, 74–81 (2004). [CrossRef]
  12. . J. Bude, G. Guss, M. Matthews, and M. L. Spaeth, “The effect of lattice temperature on surface damage in fused silica optics,”Proc. SPIE 6720, 672009 (2007). [CrossRef]
  13. . C. Wei, J. Shao, H. He, K. Yi, and Z. Fan, “Mechanism initiated by nanoabsorber for UV nanosecond-pulsedriven damage of dielectric coatings,” Opt. Express 16, 3376–3382 (2008). [CrossRef] [PubMed]
  14. . E. N. Glezer, Y. Siegal, L. Huang, and E. Mazur, “Laser induced bandgap collapse in GaAs,” Phys. Rev. B 51, 6959–6970 (1995). [CrossRef]
  15. . L. Davison and R. A. Graham, “Shock compression of solids,” Phys. Rep. 55, 255–379 (1979). [CrossRef]
  16. . P. Harris, “Band-gap collapse in uniaxially strained (shocked) elastic germanium,” J. Appl. Phys. 51, 6033–6034 (1980). [CrossRef]
  17. . K. Saito and A. J. Ikushima, “Absorption edge in silica glass,” Phys. Rev. B 62, 8584–8587 (2000). [CrossRef]
  18. . D. G. Hicks, T. R. Boehly, J. H. Eggert, J. E. Miller, P. M. Celliers, and G. W. Collins, “Dissociation of liquid silica at high pressures and temperatures,” Phys. Rev. Lett. 97, 025502 (2006). [CrossRef] [PubMed]
  19. . A. M. Lindenberg et al., “X-ray Diffuse scattering measurements of nucleation dynamics at femtosecond resolution,” Phys. Rev. Lett. 100, 135502 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited