OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10650–10658

Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence

Elena Shchepakina and Olga Korotkova  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 10650-10658 (2010)
http://dx.doi.org/10.1364/OE.18.010650


View Full Text Article

Enhanced HTML    Acrobat PDF (828 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed investigation, qualitative and quantitative, on how the atmospheric turbulence with a non-Kolmogorov power spectrum affects the major statistics of stochastic electromagnetic beams, such as the spectral composition and the states of coherence and polarization. We suggest a detailed survey on how these properties evolve on propagation of beams generated by electromagnetic Gaussian Schell-model sources, depending on the fractal constant α of the atmospheric power spectrum.

© 2010 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(030.1640) Coherence and statistical optics : Coherence
(260.5430) Physical optics : Polarization

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 23, 2010
Revised Manuscript: April 30, 2010
Manuscript Accepted: May 1, 2010
Published: May 6, 2010

Citation
Elena Shchepakina and Olga Korotkova, "Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence," Opt. Express 18, 10650-10658 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10650


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. N. Kolmogorov, “The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers,” C. R. Acad. Sci. URSS 30, 301–305 (1941).
  2. A. N. Kolmogorov, “Dissipation of energy in the locally isotropic turbulence,” C. R. Acad. Sci. URSS 32, 16–18 (1941).
  3. V. I. Tatarski, Wave Propagation in a Turbulent Medium (Nauka, Moscow, 1967).
  4. J. R. Kerr, “Experiments on turbulence characteristics and multiwavelength scintillation phenomena,” J. Opt. Soc. Am. 62, 1040-1049 (1972). [CrossRef]
  5. R. S. Lawrence, G. R. Ochs, and S. F. Clifford, “Measurements of atmospheric turbulence relevant to optical propagation,” J. Opt. Soc. Am. 60, 826-830 (1970). [CrossRef]
  6. A. S. Gurvich and M. S. Belenkii, “Influence of stratospheric turbulence on infrared imaging,” J. Opt. Soc. Am. A 12, 2517-2522 (1995). [CrossRef]
  7. M. S. Belenkii, “Influence of stratospheric turbulence on infrared imaging,” J. Opt. Soc. Am. A 12, 2517-2522 (1995). [CrossRef]
  8. F. Dalaudier, M. Crochet, and C. Sidi, “Direct comparison between in situ and radar measurements of temperature fluctuation spectra: a puzzling results,” Radio Sci. 24, 311-324 (1989). [CrossRef]
  9. F. Daludier and C. Sidi, “Direct evidence of sheets in the atmospheric temperature field,” J. Atmos. Sci. 51, 237-248 (1994). [CrossRef]
  10. H. Luce, F. Daludier, M. Crochet, and C. Sidi, “Direct comparison between in situ and VHF oblique radar measurements of refractive index spectra: a new successful attempt,” Radio Sci. 31, 1487-1500 (1996). [CrossRef]
  11. M. S. Belenkii, J. D. Barchers, S. J. Karis, C. L. Osmon, J. M. Brown, and R. Q. Fugate, “Preliminary experimental evidence of anisotropy of turbulence and the effect of non-Kolmogorov turbulence on wavefront tilt statistics,” Proc. SPIE 3762, 396-406 (1999). [CrossRef]
  12. A. Zilberman, E. Golbraikh, N. S. Kopeika, A. Virtser, I. Kupershmidt, and Y. Shtemler, “Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov turbulence,” Atmos. Res. 88, 66-77 (2008). [CrossRef]
  13. M. S. Belenkii, S. J. Karis, J. M. BrownII, and R. Q. Fugate, “Experimental study of the effect of non Kolmogorov stratospheric turbulence on star image motion,” Proc. SPIE 3126, 113–123 (1997). [CrossRef]
  14. B. E. Stribling, B. M. Welsh, and M. C. Roggemann, “Optical propagation in non-Kolmogorov atmospheric turbulence,” Proc. SPIE 2471, 181–196 (1995). [CrossRef]
  15. D. T. Kyrazis, J. Wissler, D. D. B. Keating, A. J. Preble, and K. P. Bishop, “Measurement of optical turbulence in the upper troposphere and lower stratosphere,” Proc. SPIE 2120, 43–55 (1994). [CrossRef]
  16. B. Joseph, A. Mahalov, B. Nicolaenko, and K. L. Tse, “Variability of turbulence and its outer scales in a model tropopause jet,” J. Atm. Sci. 61, 621-643 (2004). [CrossRef]
  17. A. Mahalov, B. Nicolaenko, K.L. Tse, and B. Joseph, “Eddy mixing in jet-stream turbulence under stronger stratification,” Geophys. Res. Lett. 31, L23111 (2004). [CrossRef]
  18. C. Rao, W. Jiang, and N. Ling, “Adaptive-Optics Compensation by Distributed Beacons for Non-Kolmogorov Turbulence,” Appl. Opt. 40, 3441–3449 (2001). [CrossRef]
  19. O. Korotkova, N. Farwell, and A. Mahalov, “The effect of the jet-stream on the intensity of laser beams propagating along slanted paths in the upper layers of the turbulent atmosphere,” Waves in Random Media 19, 692–702 (2009). [CrossRef]
  20. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence,” Opt. Engineering 47, 026003 (February 2008). [CrossRef]
  21. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of arrival fluctuations for free space laser beam propagation through non-Kolmogorov turbulence,” Proc. SPIE 6551, 65510E–1–12 (2007). [CrossRef]
  22. C. Rao, W. Jiang, and N. Ling, “Spatial and temporal characterization of phase fluctuations in non-Kolmogorov atmospheric turbulence,” J. Mod. Opt. 47, 1111–1126 (2000). [CrossRef]
  23. W. Du, S. Yu, L. Tan, J. Ma, Y. Jiang, and W. Xie, “Angle-of-arrival fluctiations for wave propagation trough non-Kolmogorov turbulence,” Opt. Commun. 282, 705–708 (2009). [CrossRef]
  24. L. Tan,W. Du, J. Ma, S. Yu, and Q. Han, “Log-amplitude variance for a Gaussian-beam wave propagating trough non-Kolmogorov turbulence,” Opt. Express 18, 451–461 (2010). [CrossRef] [PubMed]
  25. G. Wu, H. Guo, S. Yu, and B. Luo, “Spreading and direction of Gaussian-Schell model beam through a non-Kolmogorov turbulence,” Opt. Lett. 35, 715–717 (2010). [CrossRef] [PubMed]
  26. A. Zilberman, E. Golbraikh, and N. S. Kopeika, “Propagation of electromagnetic waves in Kolmogorov and non-Kolmogorov atmospheric turbulence: three-layer altitude model,” Appl. Opt. 47, 6385–6391 (2008). [CrossRef] [PubMed]
  27. D. F. V. James, “Change of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. A 11, 1641-1649 (1994). [CrossRef]
  28. O. Korotkova, M. Salem, and E. Wolf, “The far-zone behavior of the degree of polarization of partially coherent beams propagating through atmospheric turbulence,” Opt. Commun. 233, 225–230 (2004). [CrossRef]
  29. M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, “Polarization changes in partially coherent EM beams propagating through turbulent atmosphere,” Waves in Random Media 14, 513–523 (2004). [CrossRef]
  30. O. Korotkova, M. Salem, A. Dogariu, and E. Wolf, “Changes in the polarization ellipse of random electromagnetic beams propagating through turbulent atmosphere,” Waves Random Complex Media 15, 353–364 (2005). [CrossRef]
  31. X. Du, D. Zhao, and O. Korotkova, “Changes in the statistical properties of stochastic anisotropic electromagnetic beams on propagation in the turbulent atmosphere,” Opt. Express 15, 16909–16915 (2007). [CrossRef] [PubMed]
  32. W. Gao, “Changes of polarization of light beams on propagation trough tissue,” Opt. Commun. 260, 749–754 (2006). [CrossRef]
  33. W. Gao and O. Korotkova, “Changes in the state of polarization of a random electro-magnetic beam propagating through tissue,” Opt. Commun. 270, 474–478 (2007). [CrossRef]
  34. E. Wolf, Intoduction to the Theories of Coherence and Polarization of Light (Cambridge University Press, Cambridge, 2007).
  35. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).
  36. J. Pu and O. Korotkova, “Propagation of the degree of cross-polarization in the turbulent atmosphere” Opt. Commun. 282, 1691–1698 (2009). [CrossRef]
  37. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, “Partially polarized Gaussian Schellmodel beams,” J. Opt. A: Pure Appl. Opt. 3, 1–9 (2001). [CrossRef]
  38. H. Roychowdhury and O. Korotkova, “Realizability conditions for electromagnetic Gaussian Schell-model sources,” Opt. Commun. 249, 379–385 (2005). [CrossRef]
  39. W. Lu, L. Liu, J. Sun, Q. Yang, and Y. Zhu, “Change in degree of coherence of partially coherent electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun. 271, 1–8 (2007). [CrossRef]
  40. E. Wolf, “The influence of Young’s interferences experiment on the development of statistical optics,” in Progress in Optics, E. Wolf, ed. (Elsevier B. V., 2007), 50 pp. 251–273.
  41. O. Korotkova, “Scintillation index of a stochastic electromagnetic beam propagating in random media,” Opt. Commun. 281, 2342-2348 (2008).
  42. O. Korotkova, Y. Cai, and E. Watson, “Stochastic electromagnetic beams for LIDAR systems operating through turbulent atmosphere,” Appl. Phys. B 94, 681-690 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited