OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10685–10693

Analysis of surface-plasmon-polaritons-assisted interference imaging by using silver film with rough surface

Sha Shi, Zhiyou Zhang, Mingyang He, Xupeng Li, Jing Yang, and Jinglei Du  »View Author Affiliations

Optics Express, Vol. 18, Issue 10, pp. 10685-10693 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3411 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the surface plasmon polaritons (SPPs) interference lithography, the scattering effect caused by the rough surface of silver film deteriorates the quality of lithography patterns. Research shows that under this condition the light field in the photoresist is not the results of SPPs interference but comes from the SPPs assisted imaging in which the scattered light propagates from the upper surface of the silver film to the photoresist. The near-field optical transfer function (NOTF) is used to study this process and a method of evaluating the imaging quality is presented. The validity of NOTF is verified by both SPPs assisted interference imaging experiments and simulations by the FDTD. It is also shown that the NOTF method is not only a convenient approach to describe the nano-scale information transmission in the near-field but also a good method to optimize experimental parameters.

© 2010 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: April 6, 2010
Revised Manuscript: April 27, 2010
Manuscript Accepted: April 28, 2010
Published: May 6, 2010

Sha Shi, Zhiyou Zhang, Mingyang He, Xupeng Li, Jing Yang, and Jinglei Du, "Analysis of surface-plasmon-polaritons-assisted interference imaging by using silver film with rough surface," Opt. Express 18, 10685-10693 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Guo, J. Du, Y. Guo, and J. Yao, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett. 31(17), 2613–2615 (2006). [CrossRef] [PubMed]
  2. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005). [CrossRef] [PubMed]
  3. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004). [CrossRef]
  4. X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12(14), 3055–3065 (2004). [CrossRef] [PubMed]
  5. J.-Q. Wang, H.-M. Liang, S. Shi, and J.-L. Du, “Theoretical analysis of interference nanolithography of surface plasmon polaritons without match layer,” Chin. Phys. Lett. 26(8), 084208 (2009). [CrossRef]
  6. L. Fang, J.-L. Du, X.-W. Guo, J.-Q. Wang, Z.-Y. Zhang, X.-G. Luo, and C.-L. Du, “The theoretic analysis of maskless surface plasmon resonant interference lithography by prism coupling,” Chin. Phys. B 17(7), 2499–2503 (2008). [CrossRef]
  7. X. Guo, J. Du, X. Luo, C. Du, and Y. Guo, “Surface-plasmon polariton interference nanolithography based on end-fire coupling,” Microelectron. Eng. 84(5–8), 1037–1040 (2007). [CrossRef]
  8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  9. Z. Liu, S. Durant, H. Lee, Y. Pikus, Y. Xiong, C. Sun, and X. Zhang, “Experimental studies of far-field superlens for sub-diffractional optical imaging,” Opt. Express 15(11), 6947–6954 (2007). [CrossRef] [PubMed]
  10. Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15(12), 7095–7102 (2007). [CrossRef] [PubMed]
  11. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15(24), 15886–15891 (2007). [CrossRef] [PubMed]
  12. S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 23(11), 2383–2392 (2006). [CrossRef]
  13. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007). [CrossRef] [PubMed]
  14. V. A. Podolskiy, N. A. Kuhta, and G. W. Milton, “Optimizing the superlens: manipulating geometry to enhance the resolution,” Appl. Phys. Lett. 87(23), 231113 (2005). [CrossRef]
  15. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7(1), 255 (2005). [CrossRef]
  16. P. G. Kik, S. A. Maier, and H. A. Atwater, “Image resolution of surface-plasmon-mediated near-field focusing with planar metal films in three dimensions using finite-linewidth dipole sources,” Phys. Rev. B 69(4), 045418 (2004). [CrossRef]
  17. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968). [CrossRef]
  18. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  19. J. B. Pendry and S. A. Ramakrishna, “Near-field lenses in two dimensions,” J. Phys. Condens. Matter 14(36), 8463–8479 (2002). [CrossRef]
  20. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  21. D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004). [CrossRef]
  22. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005). [CrossRef] [PubMed]
  23. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). [CrossRef] [PubMed]
  24. Z. Zhang, J. Du, X. Guo, X. Luo, and C. Du, “High-efficiency transmission of nanoscale information by surface plasmon polaritons from near field to far field,” J. Appl. Phys. 102(7), 074301 (2007). [CrossRef]
  25. Z.-Y. Zhang, J.-L. Du, Y.-K. Guo, X.-Y. Niu, M. Li, X.-G. Luo, and C.-L. Du, “Near-field optical transfer function for far-field super-resolution Imaging,” Chin. Phys. Lett. 26(1), 014211 (2009). [CrossRef]
  26. J. W. Goodman, Introduction to Fouries Optics (McGraw-Hill, 1968)
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  28. G. Qiu and D. Cai, “Introduction to SPPs,” Physics Bimonthly 28(2), 472–494 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited