OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10777–10785

Full Poincaré beams

Amber M. Beckley, Thomas G. Brown, and Miguel A. Alonso  »View Author Affiliations

Optics Express, Vol. 18, Issue 10, pp. 10777-10785 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (988 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore the behavior of a class of fully correlated optical beams that span the entire surface of the Poincaré sphere. The beams can be constructed from a coaxial superposition of a fundamental Gaussian mode and a spiral-phase Laguerre-Gauss mode having orthogonal polarizations. When the orthogonal polarizations are right and left circular, the coverage extends from one pole of the sphere to the other in such a way that concentric circles on the beam map onto parallels on the Poincaré sphere and radial lines map onto meridians. If the beam waist parameters match, the map is stereographic and the beam propagation corresponds to a rigid rotation about the pole. We present an experimental example of how a symmetrically stressed window can produce these beams and show that the predicted rotation indeed occurs when moving through the beams’ focus.

© 2010 Optical Society of America

OCIS Codes
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

Original Manuscript: March 17, 2010
Revised Manuscript: April 14, 2010
Manuscript Accepted: April 14, 2010
Published: May 10, 2010

Virtual Issues
Unconventional Polarization States of Light (2010) Optics Express

Amber M. Beckley, Thomas G. Brown, and Miguel A. Alonso, "Full Poincare beams," Opt. Express 18, 10777-10785 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Youngworth, and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Opt. Express 7, 77–87 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-2-77. [CrossRef] [PubMed]
  2. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=aop-1-1-1 and references therein. [CrossRef]
  3. D. P. Biss, and T. G. Brown, “Cylindrical vector beam focusing through a dielectric surface,” Opt. Express 9, 490–497 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-10-490. [CrossRef] [PubMed]
  4. D. G. Hall, “Vector-beam solutions of Maxwell’s wave equation,” Opt. Lett. 21, 9–11 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-1-9. [CrossRef] [PubMed]
  5. R. H. Jordan, and D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett. 19, 427 (1994), http://www.opticsinfobase.org/abstract.cfm?URI=ol-19-7-427. [CrossRef] [PubMed]
  6. P. L. Greene, and D. G. Hall, “Focal shift in vector beams,” Opt. Express 4, 411–419 (1999), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-4-10-411. [CrossRef] [PubMed]
  7. C. J. R. Sheppard, and P. Török, “Electromagnetic field in the focal region of an electric dipole wave,” Optik (Stuttg.) 104, 175–177 (1997).
  8. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing Light to a Tighter Spot,” Opt. Commun. 179, 1 (2000). [CrossRef]
  9. R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  10. C. J. R. Sheppard, and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=ao-43-22-4322. [CrossRef] [PubMed]
  11. R. Borghi, M. Santarsiero, and M. A. Alonso, “Highly focused spirally polarized beams,” J. Opt. Soc. Am. A 22, 1420–1431 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-22-7-1420. [CrossRef]
  12. G. Lerman, and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16, 4567–4581 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-7-4567. [CrossRef] [PubMed]
  13. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31, 1726–1728 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-11-1726. [CrossRef] [PubMed]
  14. W. Chen, and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15, 4106–4111 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-7-4106. [CrossRef] [PubMed]
  15. K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and Z. Bruce, “Gao, “Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy,” Opt. Lett. 34, 971–973 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-7-971. [CrossRef] [PubMed]
  16. N. Hayazawa, “Focused Excitation of Surface Plasmon Polaritons Based on Gap-Mode in Tip-Enhanced Spectroscopy,” Jpn. J. Appl. Phys. 46, 7995 (2007). [CrossRef]
  17. K. Venkatakrishnan, and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603 (2006). [CrossRef]
  18. N. Moore, and M. A. Alonso, “Closed-form formula for Mie scattering of nonparaxial analogues of Gaussian beams,” Opt. Express 16, 5926–5933 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5926. [CrossRef] [PubMed]
  19. A. K. Spilman, and T. G. Brown, “Stress birefringent, space-variant wave plates for vortex illumination,” Appl. Opt. 26, 61–66 (2007), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-1-61. [CrossRef]
  20. A. K. Spilman, and T. G. Brown, “Stress-induced Focal Splitting,” Opt. Express 15, 8411–8421 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-13-8411. [CrossRef] [PubMed]
  21. A. K. Spilman, A. M. Beckley, and T. G. Brown, “Focal splitting and optical vortex structure induced by stress birefringence,” Proc. SPIE 6667, 666701 (2007).
  22. N. Moore, and M. A. Alonso, “Closed-form bases for the description of monochromatic, strongly focused, electromagnetic fields,” J. Opt. Soc. Am. A 29, 2211–2218 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=josaa-26-7-1754. [CrossRef]
  23. E. G. Sauter, “Gaussian beams and the Poincare sphere,” Microw. Opt. Technol. Lett. 4, 485–486 (1991) . [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1586 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited