OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10786–10795

A new type of vector fields with hybrid states of polarization

Xi-Lin Wang, Yongnan Li, Jing Chen, Cheng-Shan Guo, Jianping Ding, and Hui-Tian Wang  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 10786-10795 (2010)
http://dx.doi.org/10.1364/OE.18.010786


View Full Text Article

Enhanced HTML    Acrobat PDF (4585 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an idea based on Poincaré sphere and demonstrate the creation of a new type of vector fields, which have hybrid states of polarization. Such a type of hybridly polarized vector fields have completely different property from the reported scalar and vector fields. The novel vector fields are anticipated to result in new effects, phenomena, and applications.

© 2010 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(070.6120) Fourier optics and signal processing : Spatial light modulators

History
Original Manuscript: February 1, 2010
Revised Manuscript: March 26, 2010
Manuscript Accepted: April 12, 2010
Published: May 10, 2010

Virtual Issues
Unconventional Polarization States of Light (2010) Optics Express

Citation
Hui-Tian Wang, Xi-Lin Wang, Yongnan Li, Jing Chen, Cheng-Shan Guo, and Jianping Ding, "A new type of vector fields with hybrid states of polarization," Opt. Express 18, 10786-10795 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10786


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]
  2. C. Maurer, A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” N. J. Phys. 9, 78 (2007). [CrossRef]
  3. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32, 3549–3551 (2007). [CrossRef] [PubMed]
  4. K. S. Youngworth, and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Opt. Express 7, 77–87 (2000). [CrossRef] [PubMed]
  5. Q. Zhan, and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10, 324–331 (2002). [PubMed]
  6. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  7. C. C. Sun, and C. K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28, 99–101 (2003). [CrossRef] [PubMed]
  8. Y. Kozawa, and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793–1798 (2007). [CrossRef]
  9. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008). [CrossRef]
  10. P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, “Focusing Radially Polarized Light by a Concentrically Corrugated Silver Film without a Hole,” Phys. Rev. Lett. 102, 103902 (2009). [CrossRef]
  11. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with radially polarized light,” Nano Lett. 9, 2139 (2009). [CrossRef] [PubMed]
  12. W. Chen, and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34, 722–724 (2009). [CrossRef] [PubMed]
  13. K. Watanabe, G. Terakado, and H. Kano, “Localized surface plasmon microscope with an illumination system employing a radially polarized zeroth-order Bessel beam,” Opt. Lett. 34, 1180–1182 (2009). [CrossRef] [PubMed]
  14. F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34, 1870–1872 (2009). [CrossRef] [PubMed]
  15. J. Lin, F. Lu, H. Wang, W. Zheng, C. J. R. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95, 133703 (2009). [CrossRef]
  16. W. T. Tang, E. Y. S. Yew, and C. J. R. Sheppard, “Polarization conversion in confocal microscopy with radially polarized illumination,” Opt. Lett. 34, 2147–2149 (2009). [CrossRef] [PubMed]
  17. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003). [CrossRef] [PubMed]
  18. B. Jia, H. Kang, and J. Li, “1 and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34, 1918–1920 (2009). [CrossRef] [PubMed]
  19. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004). [CrossRef] [PubMed]
  20. J. Q. Qin, X. L. Wang, D. Jia, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17, 8407–8416 (2009). [CrossRef] [PubMed]
  21. W. Chen, and Q. Zhan, “Three-dimensional focus shaping with cylindrical vector beams,” Opt. Commun. 265, 411–417 (2006). [CrossRef]
  22. N. Bokor, and N. Davidson, “A three dimensional dark focal spot uniformly surrounded by light,” Opt. Commun. 279, 229–234 (2007). [CrossRef]
  23. X. L. Wang, J. Ding, J. Q. Qin, J. Chen, Y. X. Fan, and H. T. Wang, “Configurable three-dimensional optical cage generated from cylindrical vector beams,” Opt. Commun. 282, 3421–3425 (2009). [CrossRef]
  24. M. Rashid, O. M. Maragò, and P. H. Jones, “Focusing of high order cylindrical vector beams,” J. Opt. A, Pure Appl. Opt. 11, 065204 (2009). [CrossRef]
  25. Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005). [CrossRef] [PubMed]
  26. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151–2153 (2006). [CrossRef] [PubMed]
  27. H. Kawauchi, Y. Kozawa, and S. Sato, “Generation of radially polarized Ti:sapphire laser beam using a c-cut crystal,” Opt. Lett. 33, 1984–1986 (2008). [CrossRef] [PubMed]
  28. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32, 3272–3274 (2007). [CrossRef] [PubMed]
  29. M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008). [CrossRef]
  30. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27, 285–287 (2002). [CrossRef]
  31. Q. Zhan, and J. R. Leger, “Interferometric measurement of Berry’s phase in space-variant polarization manipulations,” Opt. Commun. 213, 241–245 (2002). [CrossRef]
  32. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Spatially-variable retardation plate for efficient generation of radially and azimuthally-polarized beams,” Opt. Commun. 281, 732–738 (2008). [CrossRef]
  33. M. A. A. Neil, F. Massoumian, R. Juskaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett. 27, 1929–1931 (2002). [CrossRef]
  34. L. Allen, and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun. 184, 67–71 (2000). [CrossRef]
  35. C. F. Li, “Physical evidence for a new symmetry axis of electromagnetic beams,” Phys. Rev. A 79, 053819 (2009). [CrossRef]
  36. M. Born, and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  37. M. Onoda, S. Murakami, and N. Nagaosa, “Geometrical aspects in optical wave-packet dynamics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74, 066610 (2006). [CrossRef]
  38. K. Yu. Bliokh, and Yu. P. Bliokh, “Polarization, transverse shifts, and angular momentum conservation laws in partial reflection and refraction of an electromagnetic wave packet,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 066609 (2007). [CrossRef]
  39. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  40. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100, 013602 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited