OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10813–10821

Polarization characterization in the focal volume of high numerical aperture objectives

Hong Kang, Baohua Jia, and Min Gu  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 10813-10821 (2010)
http://dx.doi.org/10.1364/OE.18.010813


View Full Text Article

Enhanced HTML    Acrobat PDF (1433 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper the polarization states of linearly and radially polarized plane wave and doughnut beams in the focal volume of high numerical aperture objectives are studied. Through manipulating the incident polarization states of laser beams as well as the apodization of an objective and adjusting the numerical aperture of an objective, focal fields dominantly with either one transverse component or one longitudinal component can be generated. Furthermore, tailored polarization distributions with three polarization components of the same strength are also found.

© 2010 OSA

OCIS Codes
(000.0000) General : General
(180.0180) Microscopy : Microscopy

History
Original Manuscript: February 9, 2010
Revised Manuscript: April 9, 2010
Manuscript Accepted: April 12, 2010
Published: May 10, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics
Unconventional Polarization States of Light (2010) Optics Express

Citation
Hong Kang, Baohua Jia, and Min Gu, "Polarization characterization in the focal volume of high numerical aperture objectives," Opt. Express 18, 10813-10821 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10813


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  3. A. Ashkin, “Acceleration and traping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  4. H. Blume, T. Bader, and F. Luty, “Bi-directional holographic information storage based on the optical reorientation of FA centers in KCl:Na,” Opt. Commun. 12(2), 147–151 (1974). [CrossRef]
  5. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009). [CrossRef] [PubMed]
  6. N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, “Controlling aspect ratio of focal spots of high numerical aperture objective lens in multi-photon absorption process,” Opt. Commun. 258(2), 97–102 (2006). [CrossRef]
  7. B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34(13), 1918–1920 (2009). [CrossRef] [PubMed]
  8. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15(4), 1381–1386 (1998). [CrossRef]
  9. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006). [CrossRef] [PubMed]
  10. J. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. 20(20), 3866–3871 (2008). [CrossRef]
  11. H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010). [CrossRef]
  12. Min Gu, Advanced optical imaging theory, (Springer, Heidelberg, 2000).
  13. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000). [CrossRef]
  14. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000). [CrossRef] [PubMed]
  15. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002). [PubMed]
  16. J. W. Chon, X. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002). [CrossRef]
  17. B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005). [CrossRef]
  18. I. Iglesias and B. Vohnsen, “Polarization structuring for focal volume shaping in high-resolution microscopy,” Opt. Commun. 271(1), 40–47 (2007). [CrossRef]
  19. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001). [CrossRef] [PubMed]
  20. J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113(28), 12090–12094 (2009). [CrossRef]
  21. M. Born, and E. Wolf, Principle of Optics, (Pergamon, New York, 1980).
  22. B. Jia, X. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13(18), 6821–6827 (2005). [CrossRef] [PubMed]
  23. C. J. R. Sheppard, “High-aperture beams,” J. Opt. Soc. Am. A 18(7), 1579–1587 (2001). [CrossRef]
  24. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997). [CrossRef]
  25. D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11(21), 2747–2752 (2003). [CrossRef] [PubMed]
  26. B. Jia, X. Gan, and M. Gu, “Anomalous phenomenon of a focused evanescent Laguerre-Gaussian beam,” Opt. Express 13(25), 10360–10366 (2005). [CrossRef] [PubMed]
  27. S. Takeuchi, R. Sugihara, and K. Shimoda, “Electron acceleration by longitudinal electric field of a Gaussian laser beam,” J. Phys. Soc. Jpn. 63(3), 1186–1193 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited