OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10839–10847

Vectorial fiber laser using intracavity axial birefringence

Renjie Zhou, Joseph W. Haus, Peter E. Powers, and Qiwen Zhan  »View Author Affiliations

Optics Express, Vol. 18, Issue 10, pp. 10839-10847 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (819 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we investigate the polarization properties of a fiber laser with an intracavity c-cut calcite crystal that is capable of producing reconfigurable vectorial output modes. Vectorial modes with radial, azimuthal and generalized cylindrical vector polarizations can be generated by translating one lens within the laser cavity. Detailed studies of the mode polarization evolution show that the modes inside the laser cavity can be spatially homogeneously polarized in one section of the cavity while being spatially inhomogeneously polarized in another section of the cavity, which opens the opportunities for many potential new fiber laser design possibilities and applications. Furthermore, more complicated vectorial vortex output modes are also observed by purposefully introducing angular misalignments.

© 2010 OSA

OCIS Codes
(060.2410) Fiber optics and optical communications : Fibers, erbium
(140.3510) Lasers and laser optics : Lasers, fiber
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

Original Manuscript: February 1, 2010
Revised Manuscript: March 4, 2010
Manuscript Accepted: March 17, 2010
Published: May 10, 2010

Virtual Issues
Unconventional Polarization States of Light (2010) Optics Express

Renjie Zhou, Joseph W. Haus, Peter E. Powers, and Qiwen Zhan, "Vectorial fiber laser using intracavity axial birefringence," Opt. Express 18, 10839-10847 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000). [CrossRef] [PubMed]
  2. C. J. R. Sheppard and K. G. Larkin, “Optimal concentration of electromagnetic radiation,” J. Mod. Opt. 41(7), 1495–1505 (1994). [CrossRef]
  3. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  4. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008). [CrossRef]
  5. R. Borghi, M. Santarsiero, and M. A. Alonso, “Highly focused spirally polarized beams,” J. Opt. Soc. Am. A 22(7), 1420–1431 (2005). [CrossRef]
  6. J. T. Fourkas, “Rapid determination of the three-dimensional orientation of single molecules,” Opt. Lett. 26(4), 211–213 (2001). [CrossRef]
  7. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001). [CrossRef] [PubMed]
  8. D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28(11), 923–925 (2003). [CrossRef] [PubMed]
  9. F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34(12), 1870–1872 (2009). [CrossRef] [PubMed]
  10. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007). [CrossRef]
  11. B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34(13), 1918–1920 (2009). [CrossRef] [PubMed]
  12. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004). [CrossRef] [PubMed]
  13. M. Michihata, T. Hayashi, and Y. Takaya, “Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam,” Appl. Opt. 48(32), 6143–6151 (2009). [CrossRef] [PubMed]
  14. W. Chen and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15(7), 4106–4111 (2007). [CrossRef] [PubMed]
  15. X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009). [CrossRef] [PubMed]
  16. W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009). [CrossRef] [PubMed]
  17. K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams,” Opt. Express 16(25), 20734–20741 (2008). [CrossRef] [PubMed]
  18. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009). [CrossRef] [PubMed]
  19. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009). [CrossRef] [PubMed]
  20. A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6(7), 1374–1378 (2006). [CrossRef] [PubMed]
  21. Q. Zhan and J. R. Leger, “Microellipsometer with radial symmetry,” Appl. Opt. 41(22), 4630–4637 (2002). [CrossRef] [PubMed]
  22. G. M. Lerman and U. Levy, “Radial polarization interferometer,” Opt. Express 17(25), 23234–23246 (2009). [CrossRef]
  23. S. Tripathi and K. C. Toussaint., “Rapid Mueller matrix polarimetry based on parallelized polarization state generation and detection,” Opt. Express 17(24), 21396–21407 (2009). [CrossRef] [PubMed]
  24. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009). [CrossRef]
  25. J. L. Li, K. I. Ueda, M. Musha, A. Shirakawa, and Z. M. Zhang, “Converging-axicon-based radially polarized ytterbium fiber laser and evidence on the mode profile inside the gain fiber,” Opt. Lett. 32(11), 1360–1362 (2007). [CrossRef] [PubMed]
  26. J. L. Li, K. I. Ueda, A. Shirakawa, M. Musha, L. X. Zhong, and Z. M. Zhang, “39-mW annular excitation of ytterbium fiber laser with radial polarization,” Laser Phys. Lett. 4(11), 814–818 (2007). [CrossRef]
  27. M. Fridman, G. Machavariai, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93(19), 191104 (2008). [CrossRef]
  28. R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6 µm wavelength,” Appl. Phys. Lett. 95(19), 191111 (2009). [CrossRef]
  29. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002). [PubMed]
  30. K. Otsuka, S.-C. Chu, C.-C. Lin, K. Tokunaga, and T. Ohtomo, “Spatial and polarization entanglement of lasing patterns and related dynamic behaviors in laser-diode-pumped solid-state lasers,” Opt. Express 17(24), 21615–21627 (2009). [CrossRef] [PubMed]
  31. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited