OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10871–10877

Demonstration of an elliptical plasmonic lens illuminated with radially–like polarized field

Gilad M. Lerman, Avner Yanai, Nissim Ben-Yosef, and Uriel Levy  »View Author Affiliations

Optics Express, Vol. 18, Issue 10, pp. 10871-10877 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (10457 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an elliptically symmetric plasmonic lens that is illuminated by a radially-like polarization field. This illumination function is TM polarized with regard to the plasmonic lens, ensuring optimum coupling of the incident light into surface plasmons polaritons. The structure is analyzed theoretically by using the Green function approach, and a finite difference time domain simulation. Both approaches provide similar results. Specifically we calculate and experimentally measure the field distribution on the surface and a few microns above it. The results show strong dependency of the electric field distribution on the eccentricity of the elliptic structure and the illumination wavelength. The interference of surface plasmons generates a structured pattern consisting of distinct peaks distributed inside the ellipse with locations that are wavelength dependent. This pattern can be used in several applications including structured illumination microscopy, particles beam trapping and sensing.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5430) Physical optics : Polarization

Original Manuscript: February 16, 2010
Revised Manuscript: March 31, 2010
Manuscript Accepted: April 13, 2010
Published: May 10, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics
Unconventional Polarization States of Light (2010) Optics Express

Gilad M. Lerman, Avner Yanai, Nissim Ben-Yosef, and Uriel Levy, "Demonstration of an elliptical plasmonic lens illuminated with radially–like polarized field," Opt. Express 18, 10871-10877 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005). [CrossRef] [PubMed]
  2. W. Chen and Q. Zhan, “Optimal plasmonic focusing with radial polarization,” Proc. SPIE 6450, 64500D (2007). [CrossRef]
  3. A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express 17(2), 924–932 (2009). [CrossRef] [PubMed]
  4. A. Yanai and U. Levy, “The role of short and long range surface plasmons for plasmonic focusing applications,” Opt. Express 17(16), 14270–14280 (2009). [CrossRef] [PubMed]
  5. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009). [CrossRef] [PubMed]
  6. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009). [CrossRef] [PubMed]
  7. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  8. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000). [CrossRef] [PubMed]
  9. U. Levy, C. H. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett. 29(15), 1718–1720 (2004). [CrossRef] [PubMed]
  10. I. Richter, P. C. Sun, F. Xu, and Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34(14), 2421–2429 (1995). [CrossRef] [PubMed]
  11. A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 074104 (2005). [CrossRef]
  12. M. Born, and E. Wolf, Principles of Optics (Pergamon press, 1980).
  13. P. M. Morse, and H. Feshbach, Methods of Theoretical Physics, (McGraw-Hill, 1953).
  14. S. H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005). [CrossRef] [PubMed]
  15. L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Burke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320(5881), 1332–1336 (2008). [CrossRef] [PubMed]
  16. S. Liu, C. J. Chuang, C. W. See, G. Zoriniants, W. L. Barnes, and M. G. Somekh, “Double-grating-structured light microscopy using plasmonic nanoparticle arrays,” Opt. Lett. 34(8), 1255–1257 (2009). [CrossRef] [PubMed]
  17. G. M. Lerman and U. Levy, “Tight focusing of space variant vector optical fields with no cylindrical symmetry of polarization,” Opt. Lett. 32, 2194–2196 (2007). [CrossRef] [PubMed]
  18. G. M. Lerman, Y. Lilach, and U. Levy, “Demonstration of spatially inhomogeneous vector beams with elliptical symmetry,” Opt. Lett. 34(11), 1669–1671 (2009). [CrossRef] [PubMed]
  19. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005). [CrossRef]
  20. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15(11), 6762–6767 (2007). [CrossRef] [PubMed]
  21. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]
  22. T. Grosjean and D. Courjon, “Polarization filtering induced by imaging systems: effect on image structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 046611 (2003). [CrossRef] [PubMed]
  23. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007). [CrossRef] [PubMed]
  24. H. W. Kihm, J. H. Kang, J. S. Kyoung, K. G. Lee, M. A. Seo, and K. J. Ahn, “Separation of surface plasmon polariton from nonconfined cylindrical wave launched from single slits,” Appl. Phys. Lett. 94(14), 141102 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (856 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited