OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10878–10887

Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field

Xue-Wen Chen, Vahid Sandoghdar, and Mario Agio  »View Author Affiliations

Optics Express, Vol. 18, Issue 10, pp. 10878-10887 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1587 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically show that a weakly-focused radially polarized beam can excite surface-plasmon-polaritons in metal nanowires and nanocones with efficiencies of the order of 90% and large bandwidths. The coupling mechanism relies on the formation of a standing wave on the nanowire facet, which imposes a relationship between the operating wavelength and the nanowire radius. An immediate application of this finding is nanofocusing of optical energy for implementations of ultra-fast and high-throughput linear and nonlinear nanoscopies, optical nanolithographies, quantum nano-optics and photochemistry at the nanoscale.

© 2010 Optical Society of America

OCIS Codes
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(180.4243) Microscopy : Near-field microscopy
(210.4245) Optical data storage : Near-field optical recording
(250.5403) Optoelectronics : Plasmonics
(260.6042) Physical optics : Singular optics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

Original Manuscript: January 28, 2010
Revised Manuscript: March 29, 2010
Manuscript Accepted: April 12, 2010
Published: May 10, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics
Unconventional Polarization States of Light (2010) Optics Express

Xue-Wen Chen, Vahid Sandoghdar, and Mario Agio, "Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field," Opt. Express 18, 10878-10887 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995). [CrossRef] [PubMed]
  2. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001). [CrossRef] [PubMed]
  3. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: A tunable super emitter,” Phys. Rev. Lett. 95, 017402 (2005). [CrossRef] [PubMed]
  4. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10, 105005 (2008). [CrossRef]
  5. F. Keilmann, “Surface-polariton propagation for scanning near-field optical microscopy application,” J. Microsc. 194, 567–570 (1999). [CrossRef]
  6. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000). [CrossRef]
  7. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  8. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999). [CrossRef]
  9. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-stokes raman scattering for vibrational nanoimaging,” Phys. Rev. Lett. 92, 220801 (2004). [CrossRef] [PubMed]
  10. A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. 47, 8178–8191 (2008). [CrossRef]
  11. S. Mackowski, S. Wörmke, A. J. Maier, T. H. P. Brotosudarmo, H. Harutyunyan, A. Hartschuh, A. O. Govorov, H. Scheer, and C. Bräuchle, “Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes,” Nano Lett. 8, 558–564 (2008). [CrossRef]
  12. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 053002 (2006). [CrossRef] [PubMed]
  13. G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025–2027 (2004). [CrossRef]
  14. X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9, 3756–3761 (2009). [CrossRef] [PubMed]
  15. M. Celebrano, P. Biagioni, M. Zavelani-Rossi, D. Polli, M. Labardi, M. Allegrini, M. Finazzi, L. Duò, and G. Cerullo, “Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale,” Rev. Sci. Instrum. 80, 033704 (2009). [CrossRef]
  16. R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, “Near-field fluorescence imaging with 32 nm resolution based on microfabricated cantilevered probes,” Appl. Phys. Lett. 77, 3695–3697 (2000). [CrossRef]
  17. K. Tanaka, G. Burr, T. Grosjean, T. Maletzky, and U. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Appl. Phys. B 93, 257–266 (2008). [CrossRef]
  18. E. G. Bortchagovsky, S. Klein, and U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94, 063118 (2009). [CrossRef]
  19. A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, “High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy,” Appl. Phys. Lett. 86, 013102 (2005). [CrossRef]
  20. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips; a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007). [CrossRef] [PubMed]
  21. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008). [CrossRef] [PubMed]
  22. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
  23. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” J. Opt. Soc. Am. A 22, 1432–1441 (2005). [CrossRef]
  24. M. Fleischer, C. Stanciu, F. Stade, J. Stadler, K. Braun, A. Heeren, M. Häffner, D. P. Kern, and A. J. Meixner, “Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope,” Appl. Phys. Lett. 93, 111114 (2008). [CrossRef]
  25. T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Nanofocusing of radially polarized light with dielectric-metal dielectric probe,” Opt. Express 17, 9191–9196 (2009). [CrossRef] [PubMed]
  26. F. I. Baida, and A. Belkhir, “Superfocusing and light confinement by surface plasmon excitation through radially polarized beam,” Plasmonics 4, 51–59 (2009). [CrossRef]
  27. M. Agio, X.-W. Chen, and V. Sandoghdar, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy,” (2010), US Patent Pending.
  28. N. A. Issa, and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2, 31–37 (2007). [CrossRef]
  29. M. W. Vogel, and D. K. Gramotnev, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363, 507–511 (2007). [CrossRef]
  30. A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88, 104101 (2006). [CrossRef]
  31. A. V. Goncharenko, J.-K. Wang, and Y.-C. Chang, “Electric near-field enhancement of a sharp semi-infinite conical probe: Material and cone angle dependence,” Phys. Rev. B 74, 235442 (2006). [CrossRef]
  32. A. Goncharenko, H.-C. Chang, and J.-K. Wang, “Electric near-field enhancing properties of a finite-size metal conical nano-tip,” Ultramicroscopy 107, 151–157 (2007). [CrossRef]
  33. Z. Li, F. Hao, Y. Huang, Y. Fang, P. Nordlander, and H. Xu, “Directional light emission from propagating surface plasmons of silver nanowires,” Nano Lett. 9, 4383–4386 (2009). [CrossRef] [PubMed]
  34. R. Gordon, “Reflection of cylindrical surface waves,” Opt. Express 17, 18621–18629 (2009). [CrossRef]
  35. D. R. Lide, ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2006), 87th Ed.
  36. B. Richards, and E. Wolf, “Electromagnetic diffraction in optical systems. ii. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959). [CrossRef]
  37. N. M. Mojarad, and M. Agio, “Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams,” Opt. Express 17, 117–122 (2009). [CrossRef] [PubMed]
  38. H. Ling, and S.-W. Lee, “Focusing of electromagnetic waves through a dielectric interface,” J. Opt. Soc. Am. A 1, 965–973 (1984). [CrossRef]
  39. I. M. Bassett, “Limit to concentration by focusing,” J. Mod. Opt. 33, 279–286 (1986).
  40. E. Verhagen, M. Spasenovi?, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009). [CrossRef] [PubMed]
  41. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nano. 5, 67–72 (2010). [CrossRef]
  42. M. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P.-M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008). [CrossRef]
  43. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 2005), 3rd Ed.
  44. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999), 3rd Ed.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited