OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 10905–10923

On the experimental investigation of the electric and magnetic response of a single nano-structure

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 10905-10923 (2010)
http://dx.doi.org/10.1364/OE.18.010905


View Full Text Article

Enhanced HTML    Acrobat PDF (4141 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an experimental method to separately test the optical response of a single sub-wavelength nano-structure to tailored electric and magnetic field distributions in the optical domain. For this purpose a highly focused y-polarized TEM10-mode is used which exhibits spatially separated longitudinal magnetic and transverse electric field patterns. By displacing a single sub-wavelength nano-structure, namely a single split-ring resonator (SRR), in the focal plane, different coupling scenarios can be achieved. It is shown experimentally that the single split-ring resonator tested here responds dominantly as an electric dipole. A much smaller but yet statistically significant magnetic dipole contribution is also measured by investigating the interaction of a single SRR with a magnetic field component perpendicular to the SRR plane (which is equivalent to the curl of the electric field) as well as by analyzing the intensity and polarization distribution of the scattered light with high spatial resolution. The developed experimental setup as well as the measurement techniques presented in this paper are a versatile tool to investigate the optical properties of single sub-wavelength nano-structures.

© 2010 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(290.5820) Scattering : Scattering measurements
(160.3918) Materials : Metamaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

History
Original Manuscript: February 1, 2010
Manuscript Accepted: March 17, 2010
Published: May 10, 2010

Virtual Issues
Unconventional Polarization States of Light (2010) Optics Express

Citation
Peter Banzer, Ulf Peschel, Susanne Quabis, and Gerd Leuchs, "On the experimental investigation of the electric and magnetic response of a single nano-structure," Opt. Express 18, 10905-10923 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10905


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. O. Scully, and M. S. Zubairy, “Simple laser accelerator: Optics and particle dynamics,” Phys. Rev. A 44, 2656–2663 (1991). [CrossRef] [PubMed]
  2. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1 (2000). [CrossRef]
  3. K. S. Youngworth, and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Opt. Express 7, 77–87 (2000). [CrossRef] [PubMed]
  4. J. R. Zurita-Sánchez, and L. Novotny, “Multipolar interband absorption in a semiconductor quantum dot. II. Magnetic dipole enhancement,” J. Opt. Soc. Am. B 19, 2722–2726 (2002). [CrossRef]
  5. R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  6. N. Huse, A. Schönle, and S. W. Hell, “Z-polarized confocal microscopy,” J. Biomed. Opt. 6, 273–276 (2001). [CrossRef] [PubMed]
  7. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004). [CrossRef] [PubMed]
  8. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86, 329–334 (2007). [CrossRef]
  9. B. Sick, B. Hecht, U. P. Wild, and L. Novotny, “Probing confined fields with single molecules and vice versa,” J. Microsc. 202, 365–373 (2000). [CrossRef]
  10. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal Field Modes Probed by Single Molecules,” Phys. Rev. Lett. 23, 5251–5254 (2001). [CrossRef]
  11. M. Lassen, G. Leuchs, and U. L. Andersen, “Continuous Variable Entanglement and Squeezing of Orbital Angular Momentum States,” Phys. Rev. Lett. 102, 163602 (2009). [CrossRef] [PubMed]
  12. J. Janousek, K. Wagner, J. F. Morizur, N. Treps, P. K. Lam, C. C. Harb, and H. A. Bachor, “Optical entanglement of co-propagating modes,” Nat. Photonics 3, 399–402 (2009). [CrossRef]
  13. J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B 89, 517–520 (2007). [CrossRef]
  14. A. V. Failla, S. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, “Topology measurements of metal nanoparticles with 1 nm accuracy by Confocal Interference Scattering Microscopy,” Opt. Express 15, 8532–8542 (2007). [CrossRef] [PubMed]
  15. T. Züchner, and A. V. Failla, A. Hartschuh, and A. J. Meixner, “A novel approach to detect and characterize the scattering patterns of single Au nanoparticles using confocal microscopy,” J. Microsc. 29, 337–343 (2008). [CrossRef]
  16. J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic and electric excitations in split ring resonators,” Opt. Express 15, 17881–17890 (2007). [CrossRef] [PubMed]
  17. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005). [CrossRef]
  18. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, “Photonic metamaterials: Magnetism at optical frequencies,” IEEE J. Sel. Top. Quantum Electron. 12, 1097–1105 (2006). [CrossRef]
  19. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004). [CrossRef]
  20. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 23, 550–553 (2009). [CrossRef]
  21. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express 14, 8827–8836 (2006). [CrossRef] [PubMed]
  22. M. Stalder, and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996). [CrossRef] [PubMed]
  23. R. Dorn, S. Quabis, and G. Leuchs, “The focus of light – linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1926 (2003).
  24. C. Enkrich, F. Prez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, “Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials,” Adv. Mater. 17, 2547–2549 (2005). [CrossRef]
  25. M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2, 614–617 (2008). [CrossRef]
  26. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 THz,” Science 306, 1351–1353 (2004). [CrossRef] [PubMed]
  27. L. Novotny, R. D. Grober, and K. Karrai, “Reflected image of a strongly focused spot,” Opt. Lett. 26, 789–791 (2001). [CrossRef]
  28. P. R. Bevington, and K. D. Robinson, in Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill Inc., US, 2002, 3rd Ed.
  29. Bi,norm = Bi/Ni with Ni = ? ?A(x0,y0)(?0/2 (|Ex|2 + |Ey|2))dxdy, Bi: maximum observed response derived from the line scan measurements, A(x0,y0): area of the SRR (metal area) centered at (x0,y0), and i = l, nl (l: SRR positioned in one of the main lobes; nl: SRR positioned on the nodal line).
  30. We are still investigating the explanation for the observed diagonal asymmetry. We already have evidence, that the asymmetry is a interference between the light reflected by the substrate and the electric as well as the magnetic dipole emission. Provided the SRR is not positioned exactly on the optical axis or is a result of the non-perfect shape of the SRR.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited