OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 10 — May. 10, 2010
  • pp: 9739–9746

Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth

Travis C. Briles, Dylan C. Yost, Arman Cingöz, Jun Ye, and Thomas R. Schibli  »View Author Affiliations


Optics Express, Vol. 18, Issue 10, pp. 9739-9746 (2010)
http://dx.doi.org/10.1364/OE.18.009739


View Full Text Article

Enhanced HTML    Acrobat PDF (821 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a high bandwidth piezoelectric-actuated mirror for length stabilization of an optical cavity. The actuator displays a transfer function with a flat amplitude response and greater than 135° phase margin up to 200 kHz, allowing a 180 kHz unity gain frequency to be achieved in a closed servo loop. To the best of our knowledge, this actuator has achieved the largest servo bandwidth for a piezoelectric transducer (PZT). The actuator should be very useful in a wide variety of applications requiring precision control of optical lengths, including laser frequency stabilization, optical interferometers, and optical communications.

© 2010 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 25, 2010
Revised Manuscript: April 19, 2010
Manuscript Accepted: April 21, 2010
Published: April 26, 2010

Citation
Travis C. Briles, Dylan C. Yost, Arman Cingöz, Jun Ye, and Thomas R. Schibli, "Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth," Opt. Express 18, 9739-9746 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-9739


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Salomon, D. Hils, and J. L. Hall, “Laser stabilization at the millihertz level,” J. Opt. Soc. Am. B 5, 1576–1587 (1988). [CrossRef]
  2. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible Lasers with Subhertz Linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999). [CrossRef]
  3. M. Notcutt, L.-S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30, 1815–1817 (2005). [CrossRef] [PubMed]
  4. T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531–536 (2006). [CrossRef]
  5. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15,” Opt. Lett. 32, 641–643 (2007). [CrossRef] [PubMed]
  6. J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008). [CrossRef]
  7. M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006). [CrossRef] [PubMed]
  8. M. J. Thorpe, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008). [CrossRef]
  9. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs,” Phys. Rev. Lett. 100, 013902 (2008). [CrossRef] [PubMed]
  10. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002). [CrossRef] [PubMed]
  11. S. T. Cundiff, and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003). [CrossRef]
  12. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007). [CrossRef] [PubMed]
  13. P. A. Williams, W. C. Swann, and N. R. Newbury, “High-stability transfer of an optical frequency over long fiber-optic links,” J. Opt. Soc. Am. B 25, 1284–1293 (2008). [CrossRef]
  14. M. Musha, F. L. Hong, K. Nakagawa, and K. Ueda, “Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network,” Opt. Express 16, 16459–16466 (2008). [CrossRef] [PubMed]
  15. O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phase coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Appl. Phys. B 97, 541–551 (2009). [CrossRef]
  16. O. Lopez, A. Amy-Klein, M. Lours, C. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B 98, 723–727 (2010). [CrossRef]
  17. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: The Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992). [CrossRef] [PubMed]
  18. J. L. Hall, and T. W. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett. 9, 502–504 (1984). [CrossRef] [PubMed]
  19. J. E. Debs, N. P. Robins, A. Lance, M. B. Kruger, and J. D. Close, “Piezo-locking a diode laser with saturated absorption spectroscopy,” Appl. Opt. 47, 5163–5166 (2008). [CrossRef] [PubMed]
  20. W. Bowen, Experiments towards a quantum information network with squeezed light and entanglement, PhD thesis, Australian National University (2003).
  21. W. Jitschin, and G. Meisel, “Fast frequency control of a cw dye jet laser,” Appl. Phys. (Berl.) 13, 181 (1979). [CrossRef]
  22. R. W. P. Drever, J. L. Hall, F. V. Kowalski, T. Hough, G. M. Ford, A. G. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97 (1983). [CrossRef]
  23. G. F. Franklin, J. D. Powell, and A. Emani-Naeini, Feedback Control of Dynamic Systems (Prentice Hall, Upper Saddle River, 2006).
  24. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28, 947–949 (2003). [CrossRef] [PubMed]
  25. All stack PZTs used here are from Physik Instrumente (http://www.physikinstrumente.com/). Model PL033.31 was used for testing the effect of lead as presented in Fig. 2 and model PL055.31 was used to lock the Fabry-Perot cavity with a servo bandwidth of 100 kHz.
  26. We have found that Torr Seal is a good choice for permanent, high vacuum applications whereas Crystal Bond (http://www.crystalbond.com/) is well suited to applications where the mirror needs to be frequently changed.
  27. J. L. Hall, M.S. Taubman, and J. Ye, “Laser Stabilization,” OSA Handbook v14, 2001.
  28. C. C. Fuller, S. J. Elliott, and P. A. Nelson, Active Control of Vibration (Academic Press Limited, San Diego, 1997).
  29. THS6012EVMevaluation board from Texas Instruments was used as a high current driver. The output impedance was changed from 50 Ω to 5 Ω.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited